Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-13T14:15:35.930Z Has data issue: false hasContentIssue false

Unitary invariants of qubit systems

Published online by Cambridge University Press:  01 December 2007

JEAN-GABRIEL LUQUE
Affiliation:
Institut Gaspard Monge, Université de Marne-la-Vallée, F-77454 Marne-la-Vallée cedex, France Email: luque@univ-mlv.fr, jyt@univ-mlv.fr
JEAN-YVES THIBON
Affiliation:
Institut Gaspard Monge, Université de Marne-la-Vallée, F-77454 Marne-la-Vallée cedex, France Email: luque@univ-mlv.fr, jyt@univ-mlv.fr
FRÉDÉRIC TOUMAZET
Affiliation:
Laboratoire d'Informatique de Paris Nord, Institut Galilée-Université Paris 13/Paris Nord, 99 av. J.-B. Clement 93430 Villetaneuse, France Email: ft@lipn.univ-paris13.fr

Abstract

We give an algorithm allowing the construction of bases of local unitary invariants of pure k-qubit states from a knowledge of the polynomial covariants of the group of invertible local filtering operations. The simplest invariants obtained in this way are made explicit and compared with various known entanglement measures. Complete sets of generators are obtained for up to four qubits, and the structure of the invariant algebras is discussed in detail.

Type
Paper
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aspect, A., Grangier, P. and Roger, G. (1982) Experimental realization of Einstein–Podolsky–Rosen gedankenexperiment; a new violation of Bell's inequalities. Phys. Rev. Lett. 49 9194.CrossRefGoogle Scholar
Bell, J. S. (1966) On the problem of hidden variables in quantum mechanics. Rev. Modern Phys. 38 447452.CrossRefGoogle Scholar
Bennett, C. H. and Wiesner, S. J. (1992) Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69 28812884.CrossRefGoogle ScholarPubMed
Brennen, G. K. (2003) An observable measure of entanglement for pure states of multi-qubit systems. Quantum. Inf. Comput. 3 619626.Google Scholar
Briand, E., Luque, J.-G. and Thibon, J.-Y. (2003) A complete set of covariants of the four qubit system. J. Phys. A: Mathematical and General 38 99159927.CrossRefGoogle Scholar
Briand, E., Luque, J.-G., Thibon, J.-Y. and Verstraete, F. (2004) The moduli space of three-qutrit states. J. Math. Phys. 45 48554867.CrossRefGoogle Scholar
Brylinski, J.-L. (2002) Algebraic measures of entanglement. In: Brylinski, R. K. and Chen, G. (eds.) Mathematics of quantum computation, Computational Mathematics Series 3, Chapman and Hall/CRC 3–23.Google Scholar
Brylinski, J.-L. and Brylinski, R. (2002) Invariant polynomial functions on k qudits. In: Brylinski, R. K. and Chen, G. (eds.) Mathematics of quantum computation, Computational Mathematics Series 3, Chapman and Hall/CRC 277–286.Google Scholar
Clauser, J. F., Horne, M. A., Shimony, A. and Holt, R. A. (1969) Proposed Experiment to Test Local Hidden-Variable Theories. Phys. Rev. Lett. 23 880884.CrossRefGoogle Scholar
Dür, W., Vidal, G. and Cirac, J. I. (2001) Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62 062314.CrossRefGoogle Scholar
Einstein, A., Podolsky, B. and Rosen, N. (1935) Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47 777780.CrossRefGoogle Scholar
Emary, C. (2004) A bipartite class of entanglement monotones for N-qubit pure states. J. Phys. A: Mathematical and General 37 82938302.CrossRefGoogle Scholar
Fry, E. S. and Thompson, R. C. (1976) Experimental Test of Local Hidden-Variable Theories. Phys. Rev. Lett. 37 465468.CrossRefGoogle Scholar
Grassl, M. (2002) Entanglement and invariant theory. Transparencies of a talk reporting on joint work with T. Beth, M. Rötteler and Yu. Makhlin. (Available at http://iaks-www.ira.uka.de/home/grassl/paper/MSRI_InvarTheory.pdf.)Google Scholar
Grassl, M., Rötteler, M. and Beth, T. (1998) Computing local invariants of qubit systems. Phys. Rev. A (3) 58 18331839.CrossRefGoogle Scholar
Kempe, J. (1999) Multiparticle entanglement and its applications to cryptography. Phys. Rev. A 60 910916.CrossRefGoogle Scholar
Klyachko, A. A. (2002) Coherent states, entanglement, and geometric invariant theory, quant-ph/0206012Google Scholar
Klyachko, A. A. and Shumovsky, A. S. (2003) Entanglement, local measurements and symmetry. Journal of Optics B: Quantum and Semiclassical Optics 5 S322S328.CrossRefGoogle Scholar
Le Paige, C. (1881) Sur les formes trilinéaires. C. R. Acad. Sci. Paris 92 11031105.Google Scholar
Luque, J.-G. and Thibon, J.-Y. (2003) Polynomial invariants of four qubits. Phys. Rev. A 67 042303.CrossRefGoogle Scholar
Luque, J.-G. and Thibon, J.-Y. (2005) Algebraic invariants of five qubits. J. Phys. A: Mathematical and General 39 371377.CrossRefGoogle Scholar
Macdonald, I. G. (1991) Symmetric functions and Hall polynomials, Clarendon Press, Oxford.Google Scholar
Meyer, D. A. and Wallach, N. R. (2002) Global entanglement in multiparticle systems. J. Math. Phys. 43 42734278.CrossRefGoogle Scholar
Miyake, A. (2003) Classification of multipartite entangled states by multidimensional determinants. Phys. Rev. A (3) 67 012108.CrossRefGoogle Scholar
Olver, P. J. (1999) Classical invariant theory, Cambridge University Press.CrossRefGoogle Scholar
Osterloh, A. and Siewert, J. (2004) Constructing N-qubit entanglement monotones from anti-linear operators. Phys. Rev. A 72 012337.CrossRefGoogle Scholar
Osterloh, A. and Siewert, J. (2005) Entanglement monotones and maximally entangled states in multipartite qubit systems. Int. J. Quant. Inf. 4 531.CrossRefGoogle Scholar
Schlienz, J. and Mahler, G. (1996) The maximal entangled three-particle state is unique. Phys. Lett. A 224 3944.CrossRefGoogle Scholar
Schlienz, J. and Mahler, G. (1995) Description of entanglement. Phys. Rev. A 52 43964404.CrossRefGoogle ScholarPubMed
Verstraete, F., Dehaene, J., De Moor, B. and Verschelde, H. (2002) Four qubits can be entangled in nine different ways. Phys. Rev. A 65 052112.CrossRefGoogle Scholar
Xin, G. (2004) A fast algorithm for MacMahon's partition analysis. Electron. J. Combin. 11 R58.CrossRefGoogle Scholar