No CrossRef data available.
Published online by Cambridge University Press: 26 February 2010
Let K3 be a non-Galois cubic extension of the rationals and let K6 be its normal closure. Under K6 there is a unique quadratic field K2. For i = 2, 3, 6 we define Cli to be the 3-class group of Ki and ri; to be the rank of Cli. In an earlier paper we examined the structure of Cl3 when K2 is complex and K6/K2 is unramified. In this paper we remove these restrictions and obtain similar results.