No CrossRef data available.
Article contents
About four-ball packings
Part of:
Discrete geometry
Published online by Cambridge University Press: 26 February 2010
Abstract
The main object of this note is to prove that in three-space the sausage arrangement is the densest packing of four unit balls. Our method can be used to determine minimal arrangements with respect to various properties of four-ball packings, as we point out in Section 3.
MSC classification
- Type
- Research Article
- Information
- Copyright
- Copyright © University College London 1993
References
1.Betke, U. and Gritzmann, P.. Über L. Fejes Toths Wurstvermutung in kleinen Dimensionen. Acta Math. Hungar., 43 (1984), 299–307.Google Scholar
2.Böröczky, K. Jr. Some extremal properties of the regular simplex. In Proceedings of the Conference on Intuitive Geometry, Szeged (1991).Google Scholar
4.Gandini, P. M. and Wills, J. M.. On finite sphere packings. Math. Pannonica, 3 (1992), 19–29.Google Scholar
5.Gritzmann, P. and Wills, J. M.. An upper estimate for the lattice point enumerator. Matematika, 33 (1986),. 197–203.CrossRefGoogle Scholar
6.Groemer, H.. Über die Einlagerung von Kreisen in einen konvexen Bereich. Math Zeitschr., 73 (1960), 285–294.CrossRefGoogle Scholar
7.Hadwiger, H.. Vorlesung über Inhalt, Oberfläche und Isometrie (Springer-Verlag, Berlin, 1957).Google Scholar
9.Kleinschmidt, P., Pachner, U. and Wills, J. M.. On L. Fejes Tóth's ‘Sausage Conjecture’. Isr. J. Math., 47 (1984), 216–226.Google Scholar
10.Wills, J. M.. On the density of finite packings. Acta Math. Hung., 46 (1985), 205–210.CrossRefGoogle Scholar