No CrossRef data available.
Article contents
ALGEBRAIC ASPECTS OF SPECTRAL THEORY
Part of:
Basic linear algebra
General theory of linear operators
Individual linear operators as elements of algebraic systems
Published online by Cambridge University Press: 21 December 2010
Abstract
We describe some aspects of spectral theory that involve algebraic considerations but need no analysis. Some of the important applications of the results are to the algebra of n×n matrices with entries that are polynomials or more general analytic functions.
- Type
- Research Article
- Information
- Copyright
- Copyright © University College London 2011
References
[1]Atiyah, M. F. and Macdonald, I. G., Introduction to Commutative Algebra, Addison-Wesley (Reading, MA, 1969).Google Scholar
[2]Ball, J. A. and Rakowski, M., Minimal McMillan degree rational matrix functions with prescribed local zero-pole structure. Linear Algebra Appl. 137–138 (1990), 325–349.Google Scholar
[3]Bhatia, R. and Rosenthal, P., How and why to solve the operator equation AX−XB=Y. Bull. Lond. Math. Soc. 29 (1997), 1–21.CrossRefGoogle Scholar
[4]Bourbaki, N., Éléments de mathématiques, fasc. 32, Théories spectrales, Hermann (Paris, 1967), Ch. 1, 2.Google Scholar
[6]Coppel, W. A., Matrices of rational functions. Bull. Aust. Math. Soc. 11 (1974), 89–113.CrossRefGoogle Scholar
[7]Dales, G., Banach Algebras and Automatic Continuity (London Mathematical Society Monographs 2), Clarendon Press (Oxford, 2000).Google Scholar
[8]Davies, E. B., Linear Operators and their Spectra, Cambridge University Press (Cambridge, 2007).CrossRefGoogle Scholar
[9]Davies, E. B., Decomposing the essential spectrum. J. Funct. Anal. 257 (2009), 506–536.Google Scholar
[10]Dedier, J.-P. and Tisseur, F., Perturbation theory for homogeneous polynomial eigenvalue problems. Linear Algebra Appl. 358 (2003), 71–94.Google Scholar
[11]Duffin, R. J. and Hazony, D., The degree of a rational matrix function. SIAM J. Appl. Math. 11 (1963), 645–658.CrossRefGoogle Scholar
[12]Edmunds, D. E. and Evans, W. D., Spectral Theory and Differential Operators, Oxford University Press (Oxford, 1987).Google Scholar
[13]Flanders, H. and Wimmer, H. K., On the matrix equations AX−XB=G and AX−Y B=C. SIAM J. Appl. Math. 32 (1977), 707–710.CrossRefGoogle Scholar
[14]Georgescu, V. and Iftimovici, A., C *-algebras of quantum Hamiltonians. In Operator Algebras and Mathematical Physics (Proc. Conf. Operator Algebras and Mathematical Physics, Constanta 2001, Ed. Theta) (eds J.-M. Combes, J. Cuntz, G. A. Elliot, G. Nenciu, H. Siedentop and S. Stratila) (2003) 123–167.Google Scholar
[15]Georgescu, V. and Iftimovici, A., Localizations at infinity and essential spectrum of quantum Hamiltonians: I. General theory. Rev. Math. Phys. 18 (2006), 417–483.Google Scholar
[16]Gohberg, I., Lancaster, P. and Rodman, L., Matrix Polynomials, Academic Press (New York, 1982).Google Scholar
[17]Lancaster, P. and Rodman, L., Algebraic Riccati Equations, Oxford University Press (Oxford, 1995).Google Scholar
[18]Marcus, A. S. and Merentsa, I. V., On some properties of λ-matrices. Math. Issled, Kishinev 3 (1975), 207–213 (in Russian).Google Scholar
[19]Nevanlinna, R. and Paatero, V., Introduction to Complex Analysis, Addison-Wesley (Reading, MA, 1964).Google Scholar
[20]Peller, V. V., Hankel Operators and their Applications, Springer (New York, 2003).Google Scholar
[21]Pressley, A. and Segal, G., Loop Groups (Oxford Mathematical Monographs), Oxford University Press (Oxford, 1986).Google Scholar
[22]Rosenblum, M., On the operator equation BX−XA=Q. Duke Math. J. 23 (1956), 263–269.CrossRefGoogle Scholar
[23]Rosenbrock, H. H., State-Space and Multivariable Theory, Thomas Nelson and Sons (London, 1970).Google Scholar
[24]Roth, W. E., The equation AX−Y B=C and AX−XB=C in matrices. Proc. Amer. Math. Soc. 3 (1952), 392–396.Google Scholar
[25]Saks, S. and Zygmund, A., Analytic Functions. Transl. E. J. Scott, Monografie Matematyczne, Tom 28, (Warsaw, 1952).Google Scholar
[26]Sz.-Nagy, B. and Foiaş, C., Harmonic Analysis of Operators on Hilbert Space, North-Holland (Amsterdam, 1970).Google Scholar
[27]Tao, T., 254A, Notes 5: free probability,http://terrytao.wordpress.com/2010/02/10/245a-notes-5-free-probability/.Google Scholar
[28]Voiculescu, D. V., Dykema, K. J. and Nica, A., Free random variables. In A Noncommutative Probability Approach to Free Products with Applications to Random Matrices, Operator Algebras and Harmonic Analysis on Free Groups (CRM Monograph Series 1), American Mathematical Society (Providence, RI, 1992).Google Scholar
[30]Zhou, K., Doyle, J. C. and Glover, K., Robust and Optimal Control, Prentice Hall (Upper Saddle River, NJ, 1996).Google Scholar