Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-15T11:31:32.197Z Has data issue: false hasContentIssue false

The Carathéodory limiting spherical shells in the euclidean hypersphere

Published online by Cambridge University Press:  26 February 2010

A. A. Fadlalla
Affiliation:
Faculty of Science, Cario University, Giza, Egypt.
Get access

Extract

By means of all functions regular in a domain †GCn Carathéodory [1,2] defined a metric in G. As usual, using this metric, we can define spherical shells in G. That is, if DG(t, q) denotes the Carathéodory metric between t, qG measured in G, then the Caratheéodory spherical shell S(t, q) passing through q and with centre t is defined by:

Type
Research Article
Copyright
Copyright © University College London 1966

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Carathéodory, C., Conformal representation (Cambridge Math. Tract, 1932)Google Scholar
2. Carathéodory, C., “Über das Sehwarzsohe Lemma bei analytischen funktionen von zwei komplexen veränderlichen”, Math. Annalen, 97 (1927).CrossRefGoogle Scholar
3. Sommer, F., Die geometrie der hyperkugelautomorphismen. Schriftenreihe des Math.Instituts der universitäat Münster, Heft 3 (Münster, 1949).Google Scholar