No CrossRef data available.
Article contents
Fredholm formulae and the Riesz-theory—a base for the null space of I— λoK
Published online by Cambridge University Press: 26 February 2010
Extract
In an earlier paper [10], I presented a base for the kernel, and in particular for the null space of I - λo K ((p.39). I remarked then that the base did not quite correspond to the arrangement given by Zaanen (cf. [13; p. 280], [14; pp. 339, 342]). The purpose of the present paper is to present an alternative base which does correspond to Zaanen's arrangement.
- Type
- Research Article
- Information
- Copyright
- Copyright © University College London 1972
References
1.Deprit, André, “Endomorphismes de Riesz”, Ann. Soc. Sci. Bruxelles, Sér. I, 70 (1956), 165–184.Google Scholar
2.Eells, James “A setting for global analysis”, Bull. American Math. Soc. 72 (1966), 751–807.Google Scholar
4.Palais, Richard S., et al, Seminar on the Atiyah-Singer Index Theorem (Annals of Mathematics Studies No. 57, Princeton University Press, 1965).Google Scholar
5.Riesz, Friedrich, “Über lineare Funktionalgleichungen”, Ada Math. 41 (1916), 71–98. Reprinted in Oeuvres Complétes, pp. 1053–1080.Google Scholar
6.Ruston, A. F. “On the Fredholm theory of integral equations for operators belonging to the trace class of a general Banach space”, Proc. London Math. Soc. (2) 53 (1951), 109–124.CrossRefGoogle Scholar
7.Ruston, A. F. “Direct products of Banach spaces and linear functional equations”, Proc. London Math. Soc. (3) 1 (1951), 327–384.CrossRefGoogle Scholar
8.Ruston, A. F. “Formulae of Fredholm type for compact linear operators on a general Banach space”, Proc. London Math. Soc. (3) 3 (1953), 368–377.CrossRefGoogle Scholar
9.Ruston, A. F. “Operators with a Fredholm theory”, Journal London Math. Soc. (1) 29 (1954) 318–326.CrossRefGoogle Scholar
10.Ruston, A. F. “Fredholm formulae and the Riesz theory”, Compositio Math. 18 (1967), 25–48.Google Scholar
11.Ruston, A. F. “Asymptotically quasi-compact products of bounded linear operators”, Journal Austral. Math. Soc. 16 (1973), in the press.CrossRefGoogle Scholar
13.Zaanen, A. C. “On linear functional equations”, Nieuw Arch. Wiskunde (2) 22 (1948), 269–289.Google Scholar
14.Zaanen, Adriaan Cornelius, Linear Analysis (North-Holland Publishing Co., Amsterdam, 1953).Google Scholar