Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-02T17:32:54.516Z Has data issue: false hasContentIssue false

Localization, completion and infinite complexes

Published online by Cambridge University Press:  26 February 2010

R. J. Steiner
Affiliation:
Department of Pure Mathematics and Mathematical Statistics, 16 Mill Lane, Cambridge
Get access

Extract

The object of this paper is to generalize to infinite CW complexes the known pull-back theorems or fracture lemmas concerning maps from finite CW complexes to localizations and completions.

MSC classification

Type
Research Article
Copyright
Copyright © University College London 1977

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Adams, J. F.A variant of E. H. Brown's representability theorem”, Topology 10 (1971), 185198.CrossRefGoogle Scholar
2.Bousfield, A. K. and Kan, D. M.. Homotopy limits, completions and localizations, Lecture notes in mathematics 304 (Springer, Berlin-Heidelberg-New York, 1972).CrossRefGoogle Scholar
3.Cartan, H. and Eilenberg, S.. Homological algebra (Princeton University Press, Princeton, 1956).Google Scholar
4.Hilton, P.Mislin, G. and Roitberg, J.. Localization of nilpotent groups and spaces, North Holland mathematics studies 15, Notas de matemática 55 (North Holland / American Elsevier, Amsterdam, Oxford, New York, 1975).Google Scholar
5.Jensen, C. U.. Les foncteurs dérivés de lim et lews applications en théorie des modules, Lecture notes in mathematics 254 (Springer, Berlin-Heidelberg-New York, 1972).Google Scholar
6.Kahn, P. J.. “On inverse limits of homotopy sets”, Proc. Amer. Math. Soc., 47 (1975), 487490.CrossRefGoogle Scholar
7.Meier, W.. “Localisation, complétion, et applications fantômes”, C. R. Acad. Sci. Paris, 281 1975 Serie AB, 787789.Google Scholar
8.Milnor, J.. “On characteristic classes for spherical fibre spaces”, Comm. Math. Helv., 43 (1968), 5177CrossRefGoogle Scholar
9.Segal, G.. “Classifying spaces and spectral sequences”, Publ. Math, des Inst. des HES, 34 (1968), 105112.CrossRefGoogle Scholar
10.Sullivan, D.. “Genetics of homotopy theory and the Adams conjecture”, Ann. Math., 100 (1974), 179.CrossRefGoogle Scholar