Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-11T02:00:22.309Z Has data issue: false hasContentIssue false

A new notion of κ-Souslin operation

Published online by Cambridge University Press:  26 February 2010

D. H. Fremlin
Affiliation:
Mathematics Department, University of Essex, Colchester, CO4 3SQ
Get access

Extract

I propose a definition of “κ-Souslin operation”, for uncountable cardinals κ, which for certain applications in measure theory seems an appropriate generalization of the usual Souslin operation.

Type
Research Article
Copyright
Copyright © University College London 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Dellacherie, C.. Un cours sur les ensembles analytiques. Pp. 184316 in [8].Google Scholar
2.Fremlin, D. H.. Consequences of Martin's Axiom (Cambridge, 1984).Google Scholar
3.Fremlin, D. H.. Measure-additive coverings and measurable selectors. Dissertationes Math., 260 (1987), 1116.Google Scholar
4.Jayne, J. E. and Rogers, C. A.. K-analytic sets. Pp. 2183 in [8].Google Scholar
5.Kuratowski, K.. Topology I (Academic, 1966).Google Scholar
6.Lusin, N.. Sur la classification de M Baire. C.R. Acad. Sci. (Paris), 164 (1917), 9194.Google Scholar
7.Moschovakis, Y. N.. Descriptive Set Theory (North-Holland, 1980).Google Scholar
8.Rogers, C. A. (ed.). Analytic Sets (Academic, 1980).Google Scholar
9.Souslin, M.. Sur une definition des ensembles measurables B sans nombres transfinies. C.R. Acad. Sci. (Paris), 164 (1917), 8891.Google Scholar
10.Stone, A. H.. Analytic sets in non-separable metric spaces. Pp. 471480 in [8].Google Scholar