Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-14T23:05:35.698Z Has data issue: false hasContentIssue false

On the structure of a quotient field modulo its domain

Published online by Cambridge University Press:  26 February 2010

Sang Bum Lee
Affiliation:
Department of Mathematical Education, Sangmyung University, Seoul 110-743, Korea, E-mail: sblee@sangmyung.ac.kr
Get access

Abstract

The structures of the module Q/R over certain domains R are investigated, where Q denotes the field of quotients of R.

Type
Research Article
Copyright
Copyright © University College London 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Bazzoni, S.. Class semigroups of Prüfer domains. J. Algebra, 184 (1996), 613631.CrossRefGoogle Scholar
2.Birkenmeier, G. F., Calugareanu, G., Fuchs, L. and Goelers, H. P.. The fully invariant extending property for abelian groups. Comm. Alg., 29 (2001), 673685.CrossRefGoogle Scholar
3.Brandal, W.. On h–local integral domains. Trans. Amer. Math. Soc, 206 (1975), 201212.Google Scholar
4.Fuchs, L. and Salce, L.. Modules over Non–Noetherian Domains. Math. Surveys and Monographs, vol. 84 (Amer. Math. Society. Providence, 2001).Google Scholar
5.Gilmer, R. W.. Overrings of Prüfer domains. J. Algebra, 4 (1966), 331340.Google Scholar
6.Hamsher, R.. On the structure of a one dimensional quotient field. J. Algebra, 19 (1971), 416425.Google Scholar
7.Lee, S. B.. On divisible modules over domains. Arch. Math., 53 (1989), 259262.Google Scholar
8.Matlis, E.. Some properties of Noetherian domains of dimension 1. Canad. J. Math., 13 (1961), 569586.Google Scholar
9.Matlis, E.. Cotorsion modules. Mem. Amer. Math. Soc. No. 49 (1964).CrossRefGoogle Scholar
10.Matlis, E.. Some properties of commutative ring extensions. Illinois J. Math., 31 (1987), 374418.CrossRefGoogle Scholar
11.Warfield, R. B.. Decompositions of injective modules. Pacific J. Math., 31 (1969). 263276.CrossRefGoogle Scholar