No CrossRef data available.
Published online by Cambridge University Press: 26 February 2010
Let P be a (convex) d-polytope in the Euclidean space Ed and p a point of Ed not contained in P or in a supporting hyperplane of a facet of P (we use the terminology of Grunbaum [2]). The part of the boundary of P which is “visible” from p, i.e. the union of those facets whose supporting hyperplanes separate p and P, form a (d – l)-ball, whose boundary is a (d – 2)-sphere S (all balls, spheres and manifolds to be considered are piecewise-linear). The boundary-complex ℬ(P) induces a subdivision of S, which we call a (sharp) shadow-boundary ofP.
is combinatorially isomorphic to the boundary complex of a poly tope which is a central projection of P from the point p on a hyperplane.