No CrossRef data available.
Article contents
Small positive values of indefinite ternary forms
Part of:
Geometry of numbers
Published online by Cambridge University Press: 26 February 2010
Abstract
For an indefinite quadratic form f(x1,…,xn) of discriminant d. let P(f) denote the greatest lower bound of the positive values assumed by f for integers x1, …, xn. This paper investigates the values of P3/|d| for nonzero ternary forms of signature −1, and finds the only remaining class of forms with .
MSC classification
Secondary:
11H50: Minima of forms
- Type
- Research Article
- Information
- Copyright
- Copyright © University College London 2002
References
1.Dani, S. G. and Margulis, G. A.. Values of quadratic forms at integral points: an elementary approach. Enseign. Math. (2), 36 (1990), 143–174.Google Scholar
2.Jackson, T. H.. One-sided inequalities for ternary forms I. J. Number Theory, 13 (1981), 376–397.Google Scholar
3.Jackson, T. H.. One-sided inequalities for ternary forms II. J. Number Theory. 16 (1983). 333–342.CrossRefGoogle Scholar
5.Segre, B.. Lattice points in infinite domains and asymmetric Diophantine approximations. Duke-Math. J., 12 (1945), 337–365.CrossRefGoogle Scholar
6.Watson, G. L.. Integral quadratic forms, Cambridge University Press, Cambridge (1960).Google Scholar
7.Worley, R. T.. Non-negative values of quadratic forms. J. Austral. Math. Soc., 12 (1971). 224–238.CrossRefGoogle Scholar