Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-14T19:21:32.985Z Has data issue: false hasContentIssue false

TWO-WEIGHT NORM INEQUALITIES FOR VECTOR-VALUED OPERATORS

Published online by Cambridge University Press:  26 July 2016

Carme Cascante
Affiliation:
Dept. Matemàtica i Informàtica, Universitat de Barcelona, Gran Via 585, 08071 Barcelona, Spain email cascante@ub.edu
Joaquin M. Ortega
Affiliation:
Dept. Matemàtica i Informàtica, Universitat de Barcelona, Gran Via 585, 08071 Barcelona, Spain email ortega@ub.edu
Get access

Abstract

We study two-weight norm inequalities for a vector-valued operator from a weighted $L^{p}(\unicode[STIX]{x1D70E})$-space to mixed norm $L_{l^{s}}^{q}(\unicode[STIX]{x1D707})$ spaces, $1<p<\infty$, $0<q<p$. We apply these results to the boundedness of Wolff’s potentials.

Type
Research Article
Copyright
Copyright © University College London 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cascante, C. and Ortega, J. M., On the boundedness of discrete Wolff potentials. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 8(2) 2009, 309331.Google Scholar
Cascante, C., Ortega, J. M. and Verbitsky, I. E., Trace inequalities of Sobolev type in the upper triangle case. Proc. Lond. Math. Soc. (3) 80 2000, 391414.CrossRefGoogle Scholar
Cascante, C., Ortega, J. M. and Verbitsky, I. E., On L p - L q inequalities. J. Lond. Math. Soc. (2) 7 2006, 497511.CrossRefGoogle Scholar
Cruz-Uribe, D., Two weight norm inequalities for fractional integral operators and commutators. Preprint, 2014, arXiv:1412.4157v1 [math.CA].Google Scholar
Dor, L. E., On projections in L 1 . Ann. of Math. (2) 102 1975, 463474.Google Scholar
Duoandikoetxea, J., Fourier Analysis (Graduate Studies in Mathematics 29 ), American Mathematical Society (Providence, RI, 2001).Google Scholar
Frazier, M. and Jawerth, B., A discrete transform and decomposition of distributional space. J. Funct. Anal. 93 1990, 34170.CrossRefGoogle Scholar
Hänninen, T. S., Two weight inequality for vector-valued positive dyadic operators by parallel stopping cubes. Preprint, 2014, arXiv:1404.6933 [math.CA].Google Scholar
Hänninen, T. S., Another proof of Scurry’s characterization of a two weighted norm inequality for a sequence-valued positive dyadic operator. Preprint, 2014, arXiv:1304.7759v1 [math.CA].Google Scholar
Hänninen, T. S., Dyadic analysis of integral operators: median oscillation decomposition and testing conditions. PhD Thesis, University of Helsinki, 2015. Available athttp://urn.fi/URN:ISBN:978-951-51-1393-1.Google Scholar
Hänninen, T. S., Hytönen, T. P. and Li, K., Two-weight $L^{p}-L^{q}$ bounds for positive dyadic operators: unified approach to $p\leqslant q$ and $p>q$ . Potential Anal. (to appear). Preprint, 2014,arXiv:1412.2593v1 [math.CA].q$+.+Potential+Anal.+(to+appear).+Preprint,+2014,arXiv:1412.2593v1+[math.CA].>Google Scholar
Hytönen, T., The A 2 theorem: remarks and complements. In Harmonic Analysis and Partial Differential Equations (Contemporary Mathematics 612 ), American Mathematical Society (Providence, RI, 2014), 91106.CrossRefGoogle Scholar
Lacey, M. T., Sawyer, E. T. and Uriarte-Tuero, I., Two weight inequalities for discrete positive operators. Preprint, 2009, arXiv:0911.3437v4 [math.CA].Google Scholar
Lerner, A. K. and Nazarov, F., Intuitive dyadic calculus: the basics. Preprint, 2015,arXiv:1508.05639 [math.CA].Google Scholar
Monroe, M. E., Introduction to Measure and Integration, Addison-Wesley (Reading, MA, 1953).Google Scholar
Nazarov, F., Treil, S. and Volberg, A., The Bellman function and two-weight inequalities for Haar multipliers. J. Amer. Math. Soc. 12 1999, 900929.CrossRefGoogle Scholar
Sawyer, E. T., A characterization of a two weight norm inequality for maximal operators. Studia Math. 75 1982, 111.Google Scholar
Scurry, J., A characterization of two-weight inequalities for a vector-valued operator. Preprint, 2010, arXiv:1007.3089 [math.CA].Google Scholar
Stein, E. M., Harmonic Analysis, Real-Variable Methods, Orthogonality, and Oscillatory Integrals (Princeton Mathematical Series 43 ), Princeton University Press (Princeton, NJ, 1993).Google Scholar
Tanaka, H., A characterization of two-weight trace inequalities for positive dyadic operators in the upper triangle case. Potential Anal. 41(2) 2014, 487499.Google Scholar
Treil, S., A remark on two weight estimates for positive dyadic operators. Preprint, 2012,arXiv:1201.1455 [math-CA].Google Scholar
Verbitsky, I. E., Imbedding and multiplier theorems for discrete Littlewood–Paley spaces. Pacific J. Math. 176 1996, 529556.Google Scholar
Vuorinen, E., $L^{p}(\unicode[STIX]{x1D707})\rightarrow L^{q}(\unicode[STIX]{x1D708})$ characterizations for well localized operators. J. Fourier Anal. Appl. (to appear). Preprint, 2014, arXiv:1412.2117 [math.CA].Google Scholar