Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-10T23:04:52.589Z Has data issue: false hasContentIssue false

VOLUME ESTIMATES FOR Lp-ZONOTOPES AND BEST BEST CONSTANTS IN BRASCAMP–LIEB INEQUALITIES

Published online by Cambridge University Press:  10 December 2009

David Alonso-Gutiérrez*
Affiliation:
Área de Análisis Matemático, Departamento de Matemáticas, Edificio de Matemáticas, Universidad de Zaragoza, 50009 Zaragoza, Spain (email: daalonso@unizar.es)
Get access

Abstract

Given some unit vectors a1,…,am∈ℝn that span all ℝn and some positive numbers θ1,…,θm, we consider for every p≥1 the convex body We will give some upper bounds for the volume of Kp and some lower bounds for the volume of its polar, depending on some parameters, which improve the ones obtained using the Brascamp–Lieb inequality. We will also see how the best choice of these parameters is related to the transformation which takes Kp to a special position which, for instance, when p=, is John’s position.

Type
Research Article
Copyright
Copyright © University College London 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] M. Abramowitz and I. A. Stegun (eds), Handbook of mathematical functions with formulas, graphs and mathematical tables (National Bureau of Standards Applied Mathematics Series 55), Dover (New York, NY, 1964).Google Scholar
[2]Ball, K., Volumes of sections of cubes and related problems. In Israel Seminar on Geometric Aspects of Functional Analysis (Lecture Notes in Mathematics 1376), Springer (Berlin, 1989), 251260.CrossRefGoogle Scholar
[3]Ball, K., Shadows of convex bodies. Trans. Amer. Math. Soc. 327(2) (1991), 891901.CrossRefGoogle Scholar
[4]Ball, K., Volume ratios and a reverse isoperimetric inequality. J. Lond. Math. Soc. (2) 44(2) (1991), 351359.CrossRefGoogle Scholar
[5]Barthe, F., Inégalités de Brascamp–Lieb et convexité. C. R. Acad. Sci. Paris, Sér. I 324 (1997), 885888.CrossRefGoogle Scholar
[6]Barthe, F., On a reverse form of the Brascamp–Lieb inequality. Invent. Math. 134 (1998), 335361.CrossRefGoogle Scholar
[7]Bastero, J., Galve, F., Peña, A. and Romance, M., Inequalities for the gamma function and estimates for the volume of sections of B np. Proc. Amer. Math. Soc. 130(1) (2001), 183192.CrossRefGoogle Scholar
[8]Brascamp, H. J. and Lieb, E. H., Best constants in Young’s inequality its converse and its generalization for more than three functions. Adv. Math. 20 (1976), 151173.CrossRefGoogle Scholar
[9]Carlen, E. and Cordero-Erausquin, D., Subadditivity of the entropy and its relation to Brascamp–Lieb type inequalities. Geom. Funct. Anal. 19(2) (2009), 373405.CrossRefGoogle Scholar
[10]Campi, S. and Gronchi, P., Volume inequalities for L p-zonotopes. Mathematika 53 (2006), 7180.CrossRefGoogle Scholar
[11]John, F., Extremum problems with inequalities as subsidiary conditions. In Courant Anniversary Volume, Interscience (New York, 1948), 187204.Google Scholar
[12]Lewis, D. R., Finite dimensional subspaces of L p. Studia Math. 63 (1978), 207212.CrossRefGoogle Scholar
[13]Lutwak, E., Yang, D. and Zhang, G., On the L p Minkowski problem. Trans. Amer. Math. Soc. 356 (2004), 43594370.CrossRefGoogle Scholar
[14]Lutwak, E., Yang, D. and Zhang, G., Volume inequalities for subspaces of L p. J. Differential Geom. 68 (2004), 159184.Google Scholar
[15]Lutwak, E., Yang, D. and Zhang, G., L p John ellipsoids. Proc. Lond. Math. Soc. (3) 90(2) (2005), 497520.CrossRefGoogle Scholar
[16]Meyer, M. and Pajor, A., sections of the unit ball of l np. J. Funct. Anal. 80(1) (1988), 109123.CrossRefGoogle Scholar
[17]Schmuckenschläger, M., Volume of intersections and sections of the unit ball of l np. Proc. Amer. Math. Soc. 126(5) (1998), 15271530.CrossRefGoogle Scholar
[18]Vaaler, J. D., A geometric inequality with applications with application to linear forms. Pacific J. Math. 83 (1979), 543553.CrossRefGoogle Scholar