Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-13T08:56:47.375Z Has data issue: false hasContentIssue false

An algebraic approach to the growth of class numbers of binary quadratic lattices

Published online by Cambridge University Press:  26 February 2010

A. G. Earnest
Affiliation:
Department of Mathematics, Southern Illinois University, Carbondale, Illinois 62901, U.S.A.
Dennis R. Estes
Affiliation:
Department of Mathematics, University of Southern California, Los Angeles, California 90007, U.S.A.
Get access

Extract

Two basic approaches have been used to develop explicit formulae for the number of classes in a genus of binary quadratic lattices over an algebraic number field. Analytic machinery in the form of the Minkowski-Siegel Mass Formula or the Tamagawa number of an algebraic group was employed by Pfeuffer [13] and Shyr [17] to obtain such a formula for maximal positive definite lattices over totally real number fields. On the other hand, Peters [10] observed that a formula applicable to maximal lattices over any number field can be deduced by algebraic methods from the theory of quadratic field extensions. Using group-theoretic techniques set up by the present authors [3] along with the calculation of certain local unit indices, Korner [6] derived the corresponding formula for non-maximal lattices.

Type
Research Article
Copyright
Copyright © University College London 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Boyd, D. W. and Kisilevsky, H.. “On the exponent of the ideal class group of complex quadratic fields”, Proc. Amer. Math. Soc, 31 (1971), 433436.Google Scholar
2.Chowla, S.. “An extension of Heilbronn's class number theorem”, Quart. J. Math., 5 (1934), 304307.CrossRefGoogle Scholar
3.Earnest, A. G. and Estes, D. R.. “Class groups in the genus and spinor genus of binary quadratic lattices”, Proc. London Math. Soc., (3), 40 (1980). 4052.CrossRefGoogle Scholar
4.Estes, D. R. and Pall, G.. “Spinor genera of binary quadratic forms”, J. Number Theory, 5 (1973), 421432.CrossRefGoogle Scholar
5.Hasse, H.. Bericht über neuere Untersuchungen und Probleme aus der Theorie der algebraischen Zahlkörper, Teil I, la 2 Aufl. (Würzburg-Wien, 1965).CrossRefGoogle Scholar
6.Körner, O.. “Class numbers of binary quadratic lattices over algebraic number fields”, Acta Arith. (to appear).Google Scholar
7.Odlyzko, A. M.. “Some analytic estimates of class numbers and discriminants”, Invent. Math., 29 (1975), 275286.CrossRefGoogle Scholar
8.O'Meara, O. T.. Introduction to Quadratic Forms (Springer-Verlag, 1973).CrossRefGoogle Scholar
9.Peters, M.. “Einklassige Geschlechter von Einheitsformen in totalreellen algebraischen Zahlkörpern”, Math. Ann., 226 (1977), 117120.CrossRefGoogle Scholar
10.Peters, M.. “Class numbers of maximal binary quadratic lattices over totally real number fields”, Arch. Math., 30 (1978), 398399.CrossRefGoogle Scholar
11.Peters, M.. “Definite binary quadratic forms with class number one”, Acta Arith., 36 (1980), 271272.CrossRefGoogle Scholar
12.Pfeuffer, H.. “Einklassige Geschlechter totalpositiver quadratischer Formen in totalreellen algebraischen Zahlkörpern”, J. Number Theory, 3 (1971), 371411.CrossRefGoogle Scholar
13.Pfeuffer, H.. “Darstellungsmasse binärer quadratischer Formen über totalreellen algebraischen Zahlkörpern”, Acta Arith., 34 (1978), 103111.CrossRefGoogle Scholar
14.Pfeuffer, H.. “On a conjecture about class numbers of totally positive quadratic forms in totally real algebraic number fields”, J. Number Theory, 11 (1979), 188196.CrossRefGoogle Scholar
15.Rehmann, U.. Klassenzahlen einiger totaldefiniter klassicher Gruppen über Zahlkörpern (Göttingen dissertation, 1971).Google Scholar
16.Shanks, D.. “New types of quadratic fields having invariants divisible by three”, J. Number Theory, 4 (1972), 537556.CrossRefGoogle Scholar
17.Shyr, J.-M.. “Class numbers of binary quadratic forms over algebraic number fields”, J. reine angew. Math., 307/308 (1979), 353364.Google Scholar
18.Stark, H. M.. “Some effective cases of the Brauer-Siegel Theorem”, Invent. Math., 23 (1974), 135152.CrossRefGoogle Scholar
19.Weinberger, P.. “Exponents of the class groups of complex quadratic fields”, Acta Arith., 22 (1973), 117124.CrossRefGoogle Scholar