Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T21:15:19.009Z Has data issue: false hasContentIssue false

An asymptotic formula for a-th powers dividing binomial coefficients

Published online by Cambridge University Press:  26 February 2010

J. W. Sander
Affiliation:
Institut für Mathematik, Universität Hannover, Welfengarten 1, 3000 Hannover 1, Germany.
Get access

Extract

§1. Introduction. In 1985, Sárkõzy [11] proved a conjecture of Erdõs [2] by showing that the greatest square factor s(n)2 of the “middle” binomial coefficient satisfies for arbitrary ε > 0 and sufficiently large n

Where

Type
Research Article
Copyright
Copyright © University College London 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Davenport, H.. Multiplicative Number Theory, 2nd edition, revised by Montgomery, Hugh L. (Springer-Verlag, New York-Heidelberg-Berlin, 1980).Google Scholar
2.Erdõs, P.. Problems and Results on Number Theoretic Properties of Consecutive Integers and Related Questions. Proc. Fifth Manitoba Conf. on Numerical Mathematics (1975), 2544.Google Scholar
3.Erdõs, P. and Graham, R. L.. Old and New Problems and Results in Combinatorial Number Theory. L'Enseign. Math., Geneva, 1980.Google Scholar
4.Guy, R. K.. Unsolved Problems in Number Theory (Springer-Verlag, New York-Heidelberg-Berlin, 1981).CrossRefGoogle Scholar
5.Kummer, E. E.. Über die Ergänzungssätze zu den allgemeinen Reciprocitäts gesetzen. J. reine angew. Math., 44 (1852), 93146.Google Scholar
6.Sander, J. W.. On prime powers dividing . To appear.Google Scholar
7.Sander, J. W.. Prime power divisors of . J. Number Theory, 39 (1991), 6574.CrossRefGoogle Scholar
8.Sander, J. W.. On prime divisors of binomial coefficients. To appear in Bull. London Math. Soc.Google Scholar
9.Sander, J. W.. Prime power divisors of multinomial coefficients and Artin's conjecture. To appear.Google Scholar
10.Sander, J. W.. Prime power divisors of binomial coefficients. To appear in J. reine angew. Math.Google Scholar
11.Sárkõzy, A.. On divisors of binomial coefficients, I. J. Number Theory, 20 (1985), 7080.Google Scholar