Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-10T23:08:20.639Z Has data issue: false hasContentIssue false

CHARACTERIZATION OF ELLIPSOIDS BY MEANS OF PARALLEL TRANSLATED SECTIONS

Published online by Cambridge University Press:  13 July 2010

D. Larman
Affiliation:
Department of Mathematics, University College London, Gower Street, London WC1E 6BT, U.K. (email: d.larman@math.ucl.ac.uk)
L. Montejano
Affiliation:
Instituto de Matemáticas, Universidad Nacional Autonóma de México, Mexico (email: luis@matem.unam.mx)
E. Morales-Amaya
Affiliation:
Instituto de Matemáticas, Universidad Nacional Autonóma de México, Mexico (email: efren@cimat.mx)
Get access

Abstract

Let K be a convex body and let p0∈int K. Suppose that in every direction we can choose continuously a section of K which is a translated copy of the corresponding parallel section of K through p0. Our main result essentially claims that if all these pairs of sections are different almost everywhere, then K is an ellipsoid.

Type
Research Article
Copyright
Copyright © University College London 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Aitchison, P. W., Petty, C. M. and Rogers, C. A., A convex body with a false centre is an ellipsoid. Mathematika 18 (1971), 5059.CrossRefGoogle Scholar
[2]Bianchi, G. and Gruber, P., Characterization of ellipsoids. Arch. Math. 49 (1987), 344350.CrossRefGoogle Scholar
[3]Busemann, H., The Geometry of Geodesics, Academic Press (New York, 1955).Google Scholar
[4]Larman, D. G., A note on the false centre problem. Mathematika 21 (1974), 216217.CrossRefGoogle Scholar
[5]Marchaud, A., Un theoreme sur les corps convexes. Ann. Sci. École Norm. Sup. 76 (1959), 283304.CrossRefGoogle Scholar
[6]Montejano, L., Two applications of topology to convex geometry. Proc. Steklov Inst. Math. 247 (2004), 164167.Google Scholar
[7]Montejano, L. and Morales, E., Variations of classic characterizations of ellipsoids and a short proof of the false centre theorem. Mathematika 54 (2007), 3742.CrossRefGoogle Scholar
[8]Montejano, L. and Morales, E., Shaken false centre theorem I. Mathematika 54 (2007), 4348.CrossRefGoogle Scholar
[9]Rogers, C. A., An equichordal problem. Geom. Dedicata 10 (1981), 7378.CrossRefGoogle Scholar