Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T22:25:01.279Z Has data issue: false hasContentIssue false

Closed sets of algebraic numbers in complete fields

Published online by Cambridge University Press:  26 February 2010

C. J. Smyth
Affiliation:
Trinity College, Cambridge.
Get access

Extract

A PV-number is defined to be an algebraic integer θ, of modulus greater than one, all of whose conjugates (excluding θ itself) lie inside the unit circle. Salem [1] has shown that the set S of PV-numbers forms a closed subset of the real line.

Type
Research Article
Copyright
Copyright © University College London 1970

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Salem, R., “A remarkable class of algebraic integers. Proof of a conjecture of Vijayaraghavan”, Duke Math. J., 11 (1944), 103108.CrossRefGoogle Scholar
2.Kelly, J. B., “A closed set of algebraic integers”, Amer. J. Math., 72 (1950), 565572.CrossRefGoogle Scholar
3.Chabauty, C., “Sur la répartition modulo un de certaines suites p-adiques”, C. R. Acad. Sci. Paris, 231 (1950), 465466.Google Scholar
4.Grandet-Hugot, M., “Sur les dérivés d'un ensemble d'entiers algébriques”, C. R. Acad. Sci. Paris, 254 (1962), 29052906.Google Scholar
5.Pisot, C., Quelques aspects de la théorie des entiers algébriques, 2nd Edition (Université de Montréal 1966).Google Scholar
6.Senge, H. G., “Closed sets of algebraic numbers”, Duke Math. J., 34 (1967), 307323.CrossRefGoogle Scholar
7.Cantor, D. G., “On sets of algebraic integers whose remaining conjugates lie in the unit circle”, Trans. Amer. Math. Soc., 105 (1962), 391406.CrossRefGoogle Scholar