Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T22:37:45.339Z Has data issue: false hasContentIssue false

The distribution of rational points on hypersurfaces defined over a finite field

Published online by Cambridge University Press:  26 February 2010

R. A. Smith
Affiliation:
Department of Mathematics, University of Toronto, Toronto, Canada.
Get access

Extract

Let p be an odd prime and denote by [p] the field of p elements. Let C = C(n, p) be the set of points x = (x1 …, xn) of Zn (n ≥ 1) satisfying

Type
Research Article
Copyright
Copyright © University College London 1970

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Bombieri, E., “On exponential sums in finite fields”, Amer. J. Math., 88 (1966), 71105.CrossRefGoogle Scholar
2.Bombieri, E., and Davenport, H., “On two problems of Mordell”, Amer. J. Math., 88 (1966), 6170.CrossRefGoogle Scholar
3.Chalk, J. H. H., “The number of solutions of congruences in incomplete residue systems”, Canadian J. Math., 15 (1963), 291296.CrossRefGoogle Scholar
4.Chalk, J. H. H., and Smith, R. A., “On Bombieri's estimates for exponential sums”, Acta Arith. (to appear).Google Scholar
5.Chalk, J. H. H., and Smith, R. A., and Williams, K. S., “The distribution of solutions of congruences”, Mathematika, 12 (1965), 176192.CrossRefGoogle Scholar
6.Chalk, J. H. H., and Smith, R. A., and Williams, K. S., “The distribution of solutions of congruences, corrigendum and addendum”, Mathematika, 16 (1969), 98100.CrossRefGoogle Scholar
7.Lang, S. and Weil, A., “Number of points on varieties in finite fields”, Amer. J. Math., 76 (1954), 819827.CrossRefGoogle Scholar
8.Mordell, L. J., “On the number of solutions in incomplete residue sets of quadratic congruences”, Arch, der Math., 8 (1957), 153157.CrossRefGoogle Scholar
9.Vinogradov, I. M., Elements of number theory (Dover, 1954).Google Scholar
10.Weil, A., Foundations of algebraic geometry, A.M.S. Coll. Publ., 29 (1946).Google Scholar