No CrossRef data available.
Article contents
Families of congruent curves and applications
Part of:
Classical differential geometry
Published online by Cambridge University Press: 26 February 2010
Extract
In connection with the thesis of Ch. Charitos (1989), T. Hasanis posed the following question.
MSC classification
Secondary:
53A05: Surfaces in Euclidean space
- Type
- Research Article
- Information
- Copyright
- Copyright © University College London 1999
References
[A, S] Ahlfors, L. and Sario, L.. Riemann Surfaces, 2nd printing (corrected) (Princeton Univ. Press, Princeton, New Jersey, 1965).Google Scholar
[C, P] Charitos, C. and Pamfilos, P.. Surfaces with isometric geodesies. Proc. Edinburgh Math. Soc. (2), 34 (1991), 359–362.CrossRefGoogle Scholar
[C1] Charitos, C.. Hypersurfaces with Congruent Geodesies. Math. Nachr., 155 (1992), 221–229.CrossRefGoogle Scholar
[C2] Charitos, C.. Surfaces with congruent shadow-lines. Mathematika, 37 (1990), 43–58.CrossRefGoogle Scholar
[F, S] Ferus, D. and Schirrmacher, S.. Submanifolds in Euclidean Space with Simple Geodesies. Math. Ann., 260 (1982), 57–62.CrossRefGoogle Scholar
[Mo] Montejano, L.. Convex bodies with homothetic sections. Bull. London Math. Soc, 23 (1991), 381–386.CrossRefGoogle Scholar
[Mu] Munkres, J.. Obstruction to the smoothing of piecewise-differentiable homeomorphisms. Bull. Amer. Math. Soc, 65 (1959), 332–334.CrossRefGoogle Scholar
[N] O'Neill, B.. Isotropic and Käihler immersions. Canad. J. Math., 17 (1965), 353–364.Google Scholar
[Sü] Suss, W.. Kennzeichnende Eigenschaften der Kugel als Folgerung eines Brouwerschen Fixpunktsatzes. Comment. Math. Helvet., 20 (1947), 61–64.CrossRefGoogle Scholar
[Sa] Sakamoto, K.. Helical immersions into a Euclidean space. Michigan Math. J., 33 (1986).CrossRefGoogle Scholar
[Sc] Schneider, . Convex bodies with congruent sections. Bull. London Math. Soc, 12 (1980), 52–54.CrossRefGoogle Scholar
[Sp] Spivak, M.. Differential Geometry, vol. 4, Second Edition (Publish or Perish, 1979).Google Scholar
[T] Takeuchi, N.. A sphere as a surface which contains many circles. J. Geom., 24 (1985), 123–130.CrossRefGoogle Scholar