Published online by Cambridge University Press: 28 March 2013
In a recent paper of Ellenberg, Oberlin, and Tao [The Kakeya set and maximal conjectures for algebraic varieties over finite fields. Mathematika 56 (2010), 1–25], the authors asked whether there are Besicovitch phenomena in ${ \mathbb{F} }_{q} \mathop{[[t] ] }\nolimits ^{n} $. In this paper, we answer their question in the affirmative by explicitly constructing a Kakeya set of measure zero in ${ \mathbb{F} }_{q} \mathop{[[t] ] }\nolimits ^{n} $. Furthermore, we prove that any Kakeya set in ${ \mathbb{F} }_{q} \mathop{[[t] ] }\nolimits ^{2} $ or ${ \mathbb{Z} }_{p}^{2} $ is of Minkowski dimension 2.