Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-27T21:31:19.339Z Has data issue: false hasContentIssue false

The large sieve in algebraic number fields

Published online by Cambridge University Press:  26 February 2010

Robin J. Wilson
Affiliation:
Jesus College, Oxford.
Get access

Extract

The objectjof this paper is to extend to algebraic number fields some of the recent results proved by the large sieve method. In particular we prove generalizations of Bombieri's form of the large sieve inequality [1; Theorem 1] and of the theorems of Davenport and Halberstam [2] and Bombieri [1, 4], on the average distribution of primes in arithmetic progressions.

Type
Research Article
Copyright
Copyright © University College London 1969

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Bombieri, E., “On the large sieve”, Mathematika, 12 (1965), 201225.CrossRefGoogle Scholar
2.Davenport, H. and Halberstam, H., “Primes in arithmetic progressions”, Michigan Math. J., 13 (1966), 485489.CrossRefGoogle Scholar
3.Gallagher, P. X., “The large sieve”, Mathematika, 14 (1967), 1420.CrossRefGoogle Scholar
4.Gallagher, P. X., “Bombieri's mean value theorem”, Mathematika, 15 (1968), 16.CrossRefGoogle Scholar
5.Landau, E., “Über Ideale und Primideale in Idealklassen”, Math. Zeit., 2 (1918), 52154.CrossRefGoogle Scholar
6.Landau, E., “Verallgemeinerung eines Pólyaschen Satzes auf algebraische Zahlkörper”, Göttinger Nachrichteti (1918), 478488.Google Scholar
7.Landau, E., Algebraische Zahlen (Leipzig, 1918; Chelsea, New York).Google Scholar
8.Mitsui, T., “Generalized prime number theorem”, Japan J. Math., 26 (1956), 142.CrossRefGoogle Scholar
9.Davenport, H., Multiplicative Number Theory (Markham, Chicago, 1967).Google Scholar
10.Hecke, E., Mathematische Werke (Vandenhoeck & Ruprecht, Göttingen 1959), No. 9, 178197.Google Scholar
11.Huxley, M. N., “The large sieve inequality for algebraic number fields”, Mathematika, 15 (1968), 178187.CrossRefGoogle Scholar