Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-13T07:36:07.093Z Has data issue: false hasContentIssue false

Liouville properties on graphs

Published online by Cambridge University Press:  26 February 2010

Marco Rigoli
Affiliation:
Dipartimento di Matematica, Università di Milano, via Saldini 50, 20133 Milano, Italy.
Maura Salvatori
Affiliation:
Dipartimento di Matematica, Università di Milano, via Saldini 50, 20133 Milano, Italy.
Marco Vignati
Affiliation:
Dipartimento di Matematica, Università di Milano, via Saldini 50, 20133 Milano, Italy.
Get access

Abstract

We introduce a class of “differential operators” on graphs and we prove an energy estimate and a Liouville type theorem depending on some structural properties of the operators considered.

Type
Research Article
Copyright
Copyright © University College London 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

DK.Dodziuk, J. and Karp, L.. Spectral and function theory for combinatorial Laplacians. Contemporary Mathematics, 73 (1988), 2540.CrossRefGoogle Scholar
H.Hwang, J. F.. Comparison principles and Liouville theorems for prescribed mean curvature equations in unbounded domains. Ann. Scuola Norm. Sup. Pisa, 15 (1988), 341355.Google Scholar
N.-WNash-Williams, C. St. J. A.. Random walks and electric currents in networks. Proc. Cambridge Phil. Soc., 55 (1959), 181194.CrossRefGoogle Scholar
RSV.Rigoli, M., Salvatori, M. and Vignati, M.. Subharmonic functions on graphs. Israel J. Math. To appear.Google Scholar
S.Soardi, P. M.. Potential Theory in Infinite Networks, Lecture Notes in Math., 1590 (Springer Verlag, 1994).CrossRefGoogle Scholar
W.Woess, W.. Random walks on infinite graphs and groups—a survey on selected topics. Bull. London Math. Soc., 26 (1994), 160.CrossRefGoogle Scholar