Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-14T09:01:35.628Z Has data issue: false hasContentIssue false

A maximally symmetric polyhedron of genus 3 with 10 vertices

Published online by Cambridge University Press:  26 February 2010

Ulrich Brehm
Affiliation:
FB 3-Mathematik, Technische Universität Berlin, Straße des 17. Juni 136, 1000 Berlin 12, West-Germany.
Get access

Abstract

We construct a polyhedron with ten vertices of genus three which has three axes of symmetry. It is as symmetric as possible. Ten is the minimal number of vertices which a polyhedron of genus three can have. A modification of our polyhedron yields a symmetric polyhedral realization of Dyck's regular map.

Type
Research Article
Copyright
Copyright © University College London 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Bokowski, J. and Brehm, U.. A new polyhedron of genus 3 with 10 vertices. Intuitive Geometry; Colloquia Mathematica Societatis János Bolyai, 48 (Siófok 1985), 105116.Google Scholar
2.Bokowski, J. and Eggert, A.. All realizations of Möbius' torus with 7 vertices. Preprint-Nr. 1009, (Darmstadt, 1986).Google Scholar
3.Brehm, U.. Polyeder mit zehn Ecken vom Geschlecht drei. Geometriae Dedicata, 11 (1981), 119124.CrossRefGoogle Scholar
4.Brehm, U.. Maximally symmetric polyhedral realizations of Dyck's regular map. Mathematika, 34 (1987), 229236.CrossRefGoogle Scholar
5., Á. Császár. A polyhedron without diagonals. Acta Sci. Math. Szeged, 13 (1949), 140142.Google Scholar
6.Jungerman, M. and Ringel, G.. Minimal triangulations on orientable surfaces. Acta Math., 145 (1980), 121154.CrossRefGoogle Scholar
7.Ringel, G.. Map color theorem (Springer, Berlin, 1974).CrossRefGoogle Scholar
8.Szilassy, L.. Regular toroids. Structural Topology, 13 (1986), 6980.Google Scholar