No CrossRef data available.
Article contents
MODELS OF TORSORS OVER AFFINE SPACES
Published online by Cambridge University Press: 07 March 2019
Abstract
Let $X:=\mathbb{A}_{R}^{n}$ be the $n$-dimensional affine space over a discrete valuation ring $R$ with fraction field $K$. We prove that any pointed torsor $Y$ over $\mathbb{A}_{K}^{n}$ under the action of an affine finite-type group scheme can be extended to a torsor over $\mathbb{A}_{R}^{n}$ possibly after pulling $Y$ back over an automorphism of $\mathbb{A}_{K}^{n}$. The proof is effective. Other cases, including $X=\unicode[STIX]{x1D6FC}_{p,R}$, are also discussed.
MSC classification
- Type
- Research Article
- Information
- Copyright
- Copyright © University College London 2019
References
Anantharaman, S., Schémas en groupes, espaces homogènes et espaces algébriques sur une base de dimension 1. Mém. Soc. Math. Fr.
33
1973, 5–79.Google Scholar
Antei, M., On the abelian fundamental group scheme of a family of varieties. Israel J. Math.
186
2011, 427–446.Google Scholar
Antei, M., Extension of finite solvable torsors over a curve. Manuscripta Math.
140(1) 2013, 179–194.Google Scholar
Antei, M. and Dey, A., The pseudo-fundamental group scheme. J. Algebra
523
2019, 274–284.Google Scholar
Antei, M. and Emsalem, M., Models of torsors and the fundamental group scheme. Nagoya Math. J.
230
2018, 18–34.Google Scholar
Antei, M., Emsalem, M. and Gasbarri, C., Sur l’existence du schéma en groupes fondamental. Preprint, 2015, arXiv:1504.05082v3 [math.AG].Google Scholar
Bosch, S., Lütkebohmert, W. and Raynaud, M., Néron Models, Springer (Berlin, Heidelberg, New York, 1980).Google Scholar
Grothendieck, A., Éléments de géomérie algébrique. IV. Étude locale des schémas et des morphismes de schémas. 2. Publ. Math. Inst. Hautes Études Sci.
24
1965.Google Scholar
Grothendieck, A., Revêtements étales et groupe fondamental (SGA 1), Séminaire de géométrie algébrique du Bois Marie – 1960–61
(Lecture Notes in Mathematics 224
), Springer (Berlin, Heidelberg, New York, 1971).Google Scholar
Milne, J. S., Arithmetic Duality Theorems
(Perspectives in Mathematics 1
), Academic Press (Boston, MA, 1986).Google Scholar
Raynaud, M.,
p-groupes et réduction semi-stable des courbes. In The Grothendieck Festschrift, Vol. III
(Progress in Mathematics 88
), Birkhäuser (Boston, MA, 1990), 179–197.Google Scholar
Saïdi, M., Torsors under finite and flat group schemes of rank p with Galois action. Math. Z.
245(4) 2003, 695–710.Google Scholar
Tossici, D., Effective models and extension of torsors over a d.v.r. of unequal characteristic. Int. Math. Res. Not. IMRN
2008
2008, article ID rnn111, 68 pages.Google Scholar
Waterhouse, W. C., Introduction to Affine Group Schemes
(Graduate Texts in Mathematics), Springer (New York, 1979).Google Scholar
Waterhouse, W. C. and Weisfeiler, B., One-dimensional affine group schemes. J. Algebra
66
1980, 550–568.Google Scholar