Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T21:07:41.425Z Has data issue: false hasContentIssue false

Multipliers of Cauchy integrals of logarithmic potentials

Published online by Cambridge University Press:  26 February 2010

D. J. Hallenbeck
Affiliation:
Department Mathematical Sciences, University of Delaware, Newark, DE 19716, U.S.A.
K. Samotij
Affiliation:
Instytut Matematyki, Politechnika Wrocławska, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
Get access

Extract

Let Δ = {z:|Z|<1}, Γ={z:|z|=1}, and ℳ denote the set of complex-valued Borel measures on Γ. Let Kα(z)=(1−z)−α for α>0 and K0(z)=log 1/(1−z). For α > 0 let ℱα denote the family of functions f on Δ having the property that there exists a measure μ∈ℳ such that

for |z|<1. When α=0, this condition is replaced by

Type
Research Article
Copyright
Copyright © University College London 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Duren, P. L.. Theory of Hp Spaces (Academic Press, New York, 1970).Google Scholar
2.Hallenbeck, D. J., MacGregor, T. H. and Samotij, K.. Fractional Cauchy transforms, inner functions and multipliers. To appear in Proc. London Math. Soc.Google Scholar
3.Hallenbeck, D. J. and Samotij, K.. On Cauchy integrals of logarithmic potentials and their multipliers. J. Math. Anal. Appl., 174 (1993), 614634.CrossRefGoogle Scholar
4.Hibschweiler, R. A. and MacGregor, T. H.. Closure properties of families of Cauchy-Stieltjes transforms. Proc. Amer. Math. Soc, 105 (1989), 615621.CrossRefGoogle Scholar
5.Hibschweiler, R. A. and MacGregor, T. H.. Multipliers of families of Cauchy-Stieltjes transforms. Trans. Amer. Math. Soc, 331 (1992), 377394.CrossRefGoogle Scholar
6.Pommerenke, Ch.. On the coefficients of close-to-convex functions. Michigan Math. J., 9 (1962), 259269.CrossRefGoogle Scholar
7.Titchmarsh, E. C.. The Theory of Functions 2nd Edition (Oxford Univ. Press London, 1939).Google Scholar
8.Vinogradov, S. A.. Properties of multipliers of Cauchy-Stieltjes integrals and some factorization problems for analytic functions. Amer. Math. Soc. Transl. (2), 115 (1980), 132.Google Scholar