No CrossRef data available.
Article contents
A note on the Krull dimension of certain algebras
Published online by Cambridge University Press: 26 February 2010
Extract
Abstract. For F a field we compute, explicitly and directly, the right Krull dimension of the algebra Qop⊗FQ for certain semisimple Artinian F-algebras Q. (Here Qop denotes the opposite ring of Q.) We use our calculation to give alternative proofs of some theorems of J. T. Stafford and A. I. Lichtman. Our methods involve a detailed study of skew polynomial rings.
MSC classification
Secondary:
16K20: Finite-dimensional
- Type
- Research Article
- Information
- Copyright
- Copyright © University College London 1992
References
1.Bell, A. D.. When are all prime ideals in an Ore extension Goldie? Comm. in Algebra, 13 (1985), 1743–1762.CrossRefGoogle Scholar
2.Chatters, A. W. and Hajarnavis, C. R.. Rings with Chain Conditions (Pitman, Londonetc., 1980).Google Scholar
3.Lichtman, A. I.. The Tits alternative for linear groups over rings of fractions of polycyclic group rings. Preprint, 1990.Google Scholar
4.McConnell, J. C. and Robson, J. C.. Non-commutative Noetherian Rings (John Wiley & Sons, Chichester etc., 1987).Google Scholar
5.Resco, R.. Transcendental division algebras and simple Noetherian rings. Israel J. Math., 32 (1979), 236–256.CrossRefGoogle Scholar
6.Shirvani, M. and Wehrfritz, B. A. F.. Skew Linear Groups (Cambridge Univ. Press, Cambridge etc., 1986).Google Scholar
7.Stafford, J. T.. Dimensions of division rings. Israel J. Math., 45 (1983), 33–40.CrossRefGoogle Scholar