No CrossRef data available.
Article contents
ON A CONJECTURE OF ERDŐS
Part of:
Multiplicative number theory
Published online by Cambridge University Press: 23 February 2012
Abstract
Let a be an integer different from 0, ±1, or a perfect square. We consider a conjecture of Erdős which states that #{p:ℓa(p)=r}≪εrε for any ε>0, where ℓa(p) is the order of a modulo p. In particular, we see what this conjecture says about Artin’s primitive root conjecture and compare it to the generalized Riemann hypothesis and the ABC conjecture. We also extend work of Goldfeld related to divisors of p+a and the order of a modulo p.
- Type
- Research Article
- Information
- Copyright
- Copyright © University College London 2012
References
[1]Bombieri, E., Friedlander, J. and Iwaniec, H., Primes in arithmetic progressions to large moduli. Acta Math. 156 (1986), 203–251.CrossRefGoogle Scholar
[2]Erdős, P., Bemerkungen zu einer Aufgabe in den Elementen. Arch. Math. (Basel) 27 (1976), 159–163.CrossRefGoogle Scholar
[3]Fomenko, O. M., Class number of indefinite binary quadratic forms and the residual indices of integers modulo p. J. Math. Sci. 122(6) (2004), 3685–3698.CrossRefGoogle Scholar
[4]Goldfeld, D. M., On the number of primes p for which p+a has a large prime factor. Mathematika 16 (1969), 23–27.CrossRefGoogle Scholar
[5]Gupta, R. and Murty, M. R., A remark on Artin’s conjecture. Invent. Math. 78 (1984), 127–130.CrossRefGoogle Scholar
[6]Heath-Brown, D. R., Artin’s conjecture for primitive roots. Q. J. Math. Oxford 37 (1986), 27–38.CrossRefGoogle Scholar
[8]Hooley, C., Applications of Sieve Methods to the Theory of Numbers, Cambridge University Press (Cambridge, 1976).Google Scholar
[10]Lagarias, J. and Odlyzko, A., Effective versions of the Chebotarev density theorem. In Algebraic Number Fields (ed. Frohlich, A.), Academic Press (New York, 1977), 409–464.Google Scholar
[11]Murty, M. R. and Wong, S., The ABC conjecture and prime divisors of the Lucas and Lehmer sequences. In Number Theory for the Millennium, III (Urbana, IL, 2000), AK Peters (Natick, MA, 2002), 43–54.Google Scholar
[12]Silverman, J., Wieferich’s criterion and the abc-conjecture. J. Number Theory 30 (1988), 226–237.CrossRefGoogle Scholar
[13]Stephens, P. J., Prime divisors of second-order linear recurrences. I. J. Number Theory 8 (1976), 313–332.CrossRefGoogle Scholar
[14]Stewart, C. L., On divisors of Lucas and Lehmer numbers. Preprint, 2011, arXiv:1008.1274[math.NT], pp. 1–18.Google Scholar
[15]Wagstaff, S. S. Jr, Pseudoprimes and a generalization of Artin’s conjecture. Acta Arith. 41 (1982), 141–150.CrossRefGoogle Scholar