No CrossRef data available.
Published online by Cambridge University Press: 16 May 2016
We give non-trivial bounds for the bilinear sums $$\begin{eqnarray}\mathop{\sum }_{u=1}^{U}\mathop{\sum }_{v=1}^{V}\unicode[STIX]{x1D6FC}_{u}\unicode[STIX]{x1D6FD}_{v}\,\mathbf{e}_{p}(u/f(v)),\end{eqnarray}$$
$\,\mathbf{e}_{p}(z)$ is a non-trivial additive character of the prime finite field
$\mathbb{F}_{p}$ of
$p$ elements, with integers
$U$ ,
$V$ , a polynomial
$f\in \mathbb{F}_{p}[X]$ and some complex weights
$\{\unicode[STIX]{x1D6FC}_{u}\}$ ,
$\{\unicode[STIX]{x1D6FD}_{v}\}$ . In particular, for
$f(X)=aX+b$ , we obtain new bounds of bilinear sums with Kloosterman fractions. We also obtain new bounds for similar sums with multiplicative characters of
$\mathbb{F}_{p}$ .