Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-14T13:42:49.584Z Has data issue: false hasContentIssue false

On Kloosterman's sum

Published online by Cambridge University Press:  26 February 2010

T. Estermann
Affiliation:
University College, London, W.C.1.
Get access

Extract

Let m, n, q denote positive integers, p a prime, and a, b, h, r, s, t, u, v integers. If (r, q) = 1, let [r, q] be the integer s for which 0 < sq and rs ≡ 1 (modq). Let

Type
Research Article
Copyright
Copyright © University College London 1961

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Hardy, G. H. and Wright, E. M., An introduction to the theory of numbers (Oxford, 1938).Google Scholar
2.Weil, A., “On some exponential sums”, Proc. Nat. Acad. of Sci.; 34 (1948), 204207.CrossRefGoogle ScholarPubMed
3.Salié, H., “Über die Kloostermanschen Summen S(u, v; q)”, Math. Zeit., 34 (1931), 91109.CrossRefGoogle Scholar