Published online by Cambridge University Press: 26 February 2010
The problem concerning the distribution of the fractional parts of the sequence ank (k an integer exceeding one) was first considered by Hardy and Littlewood [6] and Weyl [20] earlier this century. This work was developed, with the focus on small fractional parts of the sequence, by Vinogradov [17], Heilbronn [13] and Danicic [2] (see [1]). Recently Heath-Brown [12] has improved the unlocalized versions of these results for k ≥ 6 (a slightly stronger result than Heath-Brown's for K = 8 is given on page 24 of [8]. The method mentioned there can, after some numerical calculation, improve Heath-Brown's result for 8 ≤ k ≤ 20, but still stronger results have recently been obtained by Dr. T. D. Wooley). The cognate problem regarding the sequence apk, where p denotes a prime, has also received some attention. In this situation even the case k = 1 proves to be difficult (see [9] and [14]). The first results in this field were given by Vinogradov (see Chapter 11 of [19] for the case k = 1, [18] for k ≥ 2). For k = 2 the best result to date has been supplied by Ghosh [5], and for ≥, by Harman (Theorem 3 in [9], building on the work in [7] and [8]). In this paper we shall improve the known results for 2 ≤ k ≤ 12. For larger k, Theorem 3 in [8] is more efficient. The theorem we prove is as follows.