Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-10T21:14:12.361Z Has data issue: false hasContentIssue false

On the distribution of Fekete points II

Published online by Cambridge University Press:  26 February 2010

T. Kövari
Affiliation:
Department of Mathematics, Imperial College, London
Get access

Extract

In a paper of the same title [3] Ch. Pommerenke and the author proved several results concerning the distances of Fekete points. In the present paper I will show that the same methods can be adapted to give an answer to a problem which we could not solve at the time.

Let E be a continuum and n ≥ 4 a given positive integer. A system of points z1, …, znE that maximizes

is called a system of Fekete points. Such a system may not be unique.

Type
Research Article
Copyright
Copyright © University College London 1971

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Goluzin, G. M., Geometrische Funktionentheorie (Berlin, 1957).Google Scholar
2.Kövari, T. and Pommerenke, Ch., “On Faber polynomials and Faber Expansions”, Math. Zeit., 99 (1967), 193206.CrossRefGoogle Scholar
3.Kövari, T. and Pommerenke, Ch., “On the distribution of Fekete points”, Mathematika, 15 (1968), 7075.CrossRefGoogle Scholar
4.Paatero, V.: “Über die konforme Abbildung von Gebieten deren Ränder von beschränkter Drehung sind”, Ann. Acad. Sci. Fenn., Ser. A., 33 (1931), 177.Google Scholar
5.Pommerenke, Ch., “Konforme Abbildung und Fekete-Punkte”, Math. Zeit., 89 (1965), 422438.CrossRefGoogle Scholar