Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Utz, W.R
1978.
Existence of solutions of a generalized Blasius equation.
Journal of Mathematical Analysis and Applications,
Vol. 66,
Issue. 1,
p.
55.
Schwierz, K.‐P.
1979.
Zur Existenz und Eindeutigkeit der Görtler‐Funktionen I. Die Eindeutigkeit.
ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik,
Vol. 59,
Issue. 11,
p.
593.
Veldman, A.E.P
and
van de Vooren, A.I
1980.
On a generalized Falkner-Skan equation.
Journal of Mathematical Analysis and Applications,
Vol. 75,
Issue. 1,
p.
102.
Oskam, B.
and
Veldman, A. E. P.
1982.
Branching of the Falkner-Skan solutions for λ<0.
Journal of Engineering Mathematics,
Vol. 16,
Issue. 4,
p.
295.
Laine, Claudine
and
Reinhart, Laure
1984.
Further numerical methods for the Falkner‐Skan equations: Shooting and continuation techniques.
International Journal for Numerical Methods in Fluids,
Vol. 4,
Issue. 9,
p.
833.
Botta, E. F. F.
Hut, F. J.
and
Veldman, A. E. P.
1986.
The role of periodic solutions in the Falkner-Skan problem for λ>0.
Journal of Engineering Mathematics,
Vol. 20,
Issue. 1,
p.
81.
Summers, D.M
1989.
A random vortex simulation of Falkner-Skan boundary layer flow.
Journal of Computational Physics,
Vol. 85,
Issue. 1,
p.
86.
Giovangigli, Vincent
1993.
An Existence Theorem for a Free Boundary Problem of Hypersonic Flow Theory.
SIAM Journal on Mathematical Analysis,
Vol. 24,
Issue. 3,
p.
571.
Abu-Sitta, A.M.M.
1994.
A note on a certain boundary-layer equation.
Applied Mathematics and Computation,
Vol. 64,
Issue. 1,
p.
73.
Yang, G.C.
and
Lan, K.Q.
2007.
The velocity and shear stress functions of the Falkner–Skan equation arising in boundary layer theory.
Journal of Mathematical Analysis and Applications,
Vol. 328,
Issue. 2,
p.
1297.
Lan, K. Q.
and
Yang, G. C.
2008.
Positive Solutions of the Falkner–Skan Equation Arising in the Boundary Layer Theory.
Canadian Mathematical Bulletin,
Vol. 51,
Issue. 3,
p.
386.
Wang, C.Y.
2008.
Similarity stagnation point solutions of the Navier–Stokes equations – review and extension.
European Journal of Mechanics - B/Fluids,
Vol. 27,
Issue. 6,
p.
678.
Fazio, Riccardo
2009.
Numerical transformation methods: Blasius problem and its variants.
Applied Mathematics and Computation,
Vol. 215,
Issue. 4,
p.
1513.
Yang, G.C.
and
Lan, K.Q.
2011.
Nonexistence of the reversed flow solutions of the Falkner–Skan equations.
Nonlinear Analysis: Theory, Methods & Applications,
Vol. 74,
Issue. 16,
p.
5327.
Borrelli, Alessandra
Giantesio, Giulia
and
Patria, Maria Cristina
2012.
MHD oblique stagnation-point flow of a Newtonian fluid.
Zeitschrift für angewandte Mathematik und Physik,
Vol. 63,
Issue. 2,
p.
271.
Fazio, Riccardo
2013.
Blasius problem and Falkner–Skan model: Töpfer’s algorithm and its extension.
Computers & Fluids,
Vol. 73,
Issue. ,
p.
202.
Borrelli, Alessandra
Giantesio, Giulia
and
Patria, Maria Cristina
2018.
Effect of temperature on the MHD stagnation-point flow past an isothermal plate for a Boussinesquian Newtonian and micropolar fluid.
International Journal of Numerical Methods for Heat & Fluid Flow,
Vol. 28,
Issue. 6,
p.
1315.
Fazio, Riccardo
2019.
The iterative transformation method.
International Journal of Non-Linear Mechanics,
Vol. 116,
Issue. ,
p.
181.
Makhfi, Abdelali
and
Bebbouchi, Rachid
2020.
On the generalized Blasius equation.
Afrika Matematika,
Vol. 31,
Issue. 5-6,
p.
803.
Fazio, Riccardo
2021.
Existence and Uniqueness of BVPs Defined on Semi-Infinite Intervals: Insight from the Iterative Transformation Method.
Mathematical and Computational Applications,
Vol. 26,
Issue. 1,
p.
18.