No CrossRef data available.
Published online by Cambridge University Press: 26 February 2010
Let Mn be a smooth, compact and strictly convex, embedded hypersurface of Rn + 1 (n ≥ 1), an ovaloid for short. By “strictly convex” we mean that the Gauss-Kronecker curvature where ki are the principal curvatures with respect to the inner unit normal field, is everywhere positive. It is well knpwn [5, p. 41] that, for such a hypersurface, the spherical-image mapping is a diffeomorphism onto the unit hypersphere. Furthermore, Mn is the boundary of an open bounded convex body, which we shall call the interior of Mn.