Published online by Cambridge University Press: 26 February 2010
A general convex body in Euclidean space can be approximated by smooth convex bodies, and many results, arising first in the differential geometry of smooth convex bodies, have been extended to yield corresponding results for general convex bodies. Although convex bodies can be approximated by convex polyhedra, very little of the rich theory of convex polyhedra has been extended to general convex bodies. In this paper, we extend the concept of the one-skeleton of a convex polytope to yield the concept of the one-skeleton of a general convex body. We investigate the connectivity properties of this one-skeleton, and we extend a result of Balinski [1], on paths in the one-skeleton of a convex polytope to the class of convex bodies.