Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-10T19:37:58.486Z Has data issue: false hasContentIssue false

PERFECT POWERS WITH THREE DIGITS

Published online by Cambridge University Press:  06 August 2013

Michael A. Bennett
Affiliation:
Department of Mathematics, University of British Columbia, 1984 Mathematics Road, Vancouver, V6T 1Z2,Canada email bennett@math.ubc.ca
Yann Bugeaud
Affiliation:
Mathématiques, Université de Strasbourg, 7, rue René Descartes, 67084 Strasbourg,France email bugeaud@math.unistra.fr
Get access

Abstract

We solve the equation ${x}^{a} + {x}^{b} + 1= {y}^{q} $ in positive integers $x, y, a, b$ and $q$ with $a\gt b$ and $q\geq 2$ coprime to $\phi (x)$. This requires a combination of a variety of techniques from effective Diophantine approximation, including lower bounds for linear forms in complex and $p$-adic logarithms, the hypergeometric method of Thue and Siegel applied $p$-adically, local methods, and the algorithmic resolution of Thue equations.

Type
Research Article
Copyright
Copyright © University College London 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bennett, M., Perfect powers with few ternary digits, Integers 12A (The John Selfridge Memorial Volume), 8pp., 2012.CrossRefGoogle Scholar
Bennett, M., Bugeaud, Y. and Mignotte, M., Perfect powers with few binary digits and related Diophantine problems. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) (to appear).Google Scholar
Bennett, M., Bugeaud, Y. and Mignotte, M., Perfect powers with few binary digits and related Diophantine problems, II. Math. Proc. Cambridge Philos. Soc. 153 (2012), 525540.CrossRefGoogle Scholar
Beukers, F., On the generalized Ramanujan–Nagell equation II. Acta Arith. 39 (1981), 113123.CrossRefGoogle Scholar
Bugeaud, Y., Linear forms in two $m$-adic logarithms and applications to Diophantine problems. Compositio Math. 132 (2002), 137158.CrossRefGoogle Scholar
Bugeaud, Y., Mignotte, M. and Roy, Y., On the Diophantine equation $\frac{{x}^{n} - 1}{x- 1} = {y}^{q} $. Pacific J. Math. 193 (2000), 257268.CrossRefGoogle Scholar
Bugeaud, Y., Mignotte, M., Roy, Y. and Shorey, T. N., The diophantine equation $({x}^{n} - 1)/ (x- 1)= {y}^{q} $ has no solution with $x$ square. Math. Proc. Cambridge Philos. Soc. 127 (1999), 353372.Google Scholar
Chudnovsky, G. V., On the method of Thue–Siegel. Ann. of Math. (2) 117 (1983), 325382.Google Scholar
Corvaja, P. and Zannier, U., On the Diophantine equation $f({a}^{m} , y)= {b}^{n} $. Acta Arith. 94 (2000), 2540.CrossRefGoogle Scholar
Corvaja, P. and Zannier, U., Finiteness of odd perfect powers with four nonzero binary digits. Ann. Inst. Fourier (Grenoble) 63 (2013), 715731.CrossRefGoogle Scholar
Le, M., A note on the diophantine equation $\frac{{x}^{m} - 1}{x- 1} = {y}^{n} $. Acta Arith. 64 (1993), 1928.Google Scholar
Luca, F., The Diophantine equation ${x}^{2} = {p}^{a} \pm {p}^{b} + 1$. Acta Arith. 112 (2004), 87101.CrossRefGoogle Scholar
Saradha, N. and Shorey, T. N., The equation $\frac{{x}^{n} - 1}{x- 1} = {y}^{q} $ with $x$ square. Math. Proc. Cambridge Philos. Soc. 125 (1999), 119.CrossRefGoogle Scholar
Scott, R., Elementary treatment of ${p}^{a} \pm {p}^{b} + 1= {x}^{2} $. Available online at the homepage of Robert Styer: http://www41.homepage.villanova.edu/robert.styer/ReeseScott/index.htm.Google Scholar
Szalay, L., The equations ${2}^{n} \pm {2}^{m} \pm {2}^{l} = {z}^{2} $. Indag. Math. (N.S.) 13 (2002), 131142.CrossRefGoogle Scholar