Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T21:21:59.602Z Has data issue: false hasContentIssue false

Rings of fractional dimension

Published online by Cambridge University Press:  26 February 2010

K. J. Falconer
Affiliation:
School of Mathematics, University Walk, Bristol. BS8 1TW
Get access

Extract

We define s-dimensional Hausdorff outer measure on subsets of ℝn by

Here | | denotes the diameter of a set. The Souslin sets, which include the Borel sets, are Hs-measurable for any s ≥ 0.

Type
Research Article
Copyright
Copyright © University College London 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Davies, Roy O.. Subsets of finite measure in analytic sets, Indag. Math., 14 (1952), 488489.CrossRefGoogle Scholar
2.Davies, Roy O.. Two counter-examples concerning Hausdorff dimension of projections. Coiloq. Math., 42 (1979), 5358.CrossRefGoogle Scholar
3.Erdős, P.. Some remarks on subgroups of real numbers. Coiloq. Math., 42 (1979), 119120.CrossRefGoogle Scholar
4.Erdős, P. and Volkmann, B.. Additive Gruppen mit vorgegebener Hausdorffscher Dimension. J. Reine Angew. Math., 221 (1966), 203208.Google Scholar
5.Falconer, K. J.. Hausdorff dimension and the exceptional set of projections. Mathematika, 29 (1982), 109115.CrossRefGoogle Scholar
6.Falconer, K. J.. The geometry of fractal sets (Cambridge University Press, 1984).Google Scholar
7.Kahnert, D.. Hausdorff-Masse von Summennengen I. J. Reine Angew. Math., 264 (1973), 128.Google Scholar
8.Kahnert, D.. Hausdorff-Masse von Summennengen II. J. Reine Angew. Math., 266 (1974), 19.Google Scholar
9.Marstrand, J. M.. The dimension of Cartesian product sets. Proc. Cambridge Phil. Soc., 50 (1954), 198202.CrossRefGoogle Scholar
10.Volkmann, B.. Eine metrische Figenschaft reeller Zahlkörper. Math. Annalen, 141 (1960), 237238.CrossRefGoogle Scholar