Article contents
Short surface waves due to an oscillating half-immersed sphere
Published online by Cambridge University Press: 26 February 2010
Extract
This paper uses systems of image sources to construct suitable generalised Green's functions for considering small amplitude short surface waves due to an oscillating immersed sphere. A sphere of radius a is half-immersed in a fluid under gravity and is making vertical oscillations of small constant amplitude and period 2π/σ about this position. It is required to find the fluid motion, and in particular the virtual mass and wavemaking coefficients. For sufficiently small amplitudes the motion depends non-trivially on only a single dimensionless parameter
where g is the gravitational acceleration. This was shown by Ursell in an unpublished U. S. Navy report in which the methods of an earlier paper (Ursell, 1949) were adapted from cylindrical to spherical symmetry and resolved the conflict between Havelock (1955) and Barakat (1962) in favour of the former. Ursell showed that the virtual mass coefficient is
i.e. infinitely increasing initially so that Barakat's results must be incorrect near N = 0. However, although existence is proved for all N, the same difficulty arises as with the heaving cylinder, namely computation is only practical for values of N up to about 1. In the cylindrical case, Ursell (1953) developed a method for finding the asymptotic solution for large N and here it will be adapted, surprisingly perhaps, to deal with the spherical case. Ursell (1954) then published a formal solution which gave the same virtual mass as the rigorous treatment and if this formal method is applied to the heaving sphere, the virtual mass coefficient obtained is
MSC classification
- Type
- Research Article
- Information
- Copyright
- Copyright © University College London 1971
References
- 9
- Cited by