Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-10T21:29:03.394Z Has data issue: false hasContentIssue false

SOME FELLER SEMIGROUPS ON $C_{\infty }(\mathbb{R}^{n}\times \mathbb{Z}^{m})$ GENERATED BY PSEUDO-DIFFERENTIAL OPERATORS

Published online by Cambridge University Press:  15 April 2015

Kristian P. Evans
Affiliation:
Mathematics Department, Swansea University, Singleton Park, Swansea SA2 8PP, U.K. email K.Evans@Swansea.ac.uk
Niels Jacob
Affiliation:
Mathematics Department, Swansea University, Singleton Park, Swansea SA2 8PP, U.K. email N.Jacob@Swansea.ac.uk
Chenglin Shen
Affiliation:
Mathematics Department, Swansea University, Singleton Park, Swansea SA2 8PP, U.K. email 570124@Swansea.ac.uk
Get access

Abstract

In this paper we construct some Feller semigroups, hence Feller processes, with state space $\mathbb{R}^{n}\times \mathbb{Z}^{m}$ starting with pseudo-differential operators having symbols defined on $\mathbb{R}^{n}\times \mathbb{R}^{n}\times \mathbb{Z}^{m}\times \mathbb{T}^{m}$.

Type
Research Article
Copyright
Copyright © University College London 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berg, Chr. and Forst, G., Potential Theory on Locally Compact Abelian Groups (Ergebnisse der Mathematik und ihrer Grenzgebiete (Ser. II) 87), Springer (Berlin, 1975).CrossRefGoogle Scholar
Böttcher, B., Schilling, R. and Wang, J., Lévy Type Processes: Construction, Approximation and Sample Path Properties (Lecture Notes in Mathematics 2099), Springer (Cham, 2013).Google Scholar
Courrège, Ph., Sur la forme intégro-différentielle des opérateurs de $C_{K}^{\infty }$ dans $C$ satisfaisant au principe du maximum. In: Sém. Théorie du Potentiel 1965/66. Exposé 2, 38pp.Google Scholar
Ethier, S. N. and Kurtz, Th. G., Markov Processes – Characterization and Convergence (Wiley Series in Probability and Mathematical Statistics), Wiley (New York, 1986).CrossRefGoogle Scholar
Evans, K. and Jacob, N., Q-matrices as pseudo-differential operators with negative definite symbols. Math. Nachr. 286 2013, 631640.CrossRefGoogle Scholar
Evans, K., Jacob, N. and Morris, O., On a class of pseudo-differential operators on ℝn ×ℤm generating Feller semigroups. Rev. Roumaine Math. Pures Appl. 59 2014, 5575.Google Scholar
Jacob, N., A class of Feller semigroups generated by pseudo-differential operators. Math. Z. 215 1994, 151166.CrossRefGoogle Scholar
Jacob, N., Pseudo-differential Operators and Markov Processes I. Fourier Analysis and Semigroups, Imperial College Press (London, 2001).Google Scholar
Jacob, N., Pseudo-differential Operators and Markov Processes II. Generators and their Potential Theory, Imperial College Press (London, 2002).CrossRefGoogle Scholar
Jacob, N., Knopova, V., Landwehr, S. and Schilling, R. L., A geometric interpretation of the transition density of a symmetric Lévy process. Sci. China Math. 55 2012, 10991126.CrossRefGoogle Scholar
Mao, X. and Yuan, C., Stochastic Differential Equations with Markov Switching, Imperial College Press (London, 2006).CrossRefGoogle Scholar
Maz’ya, V., Sobolev Spaces with Applications to Elliptic Partial Differential Equations, 2nd edn, revised and augmented (Grundlchren der mathematischen Wissenschaften 342), Springer (Berlin, 2011).CrossRefGoogle Scholar
Morris, O. C., On a class of one-parameter operator semigroups with state space $\mathbb{R}^{n}\times \mathbb{Z}^{m}$ generated by pseudo-differential operators. PhD Thesis, Swansea University, 2013.Google Scholar
Shen, C., PhD Thesis, Swansea University (in preparation).Google Scholar