Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T21:20:17.687Z Has data issue: false hasContentIssue false

The spectral theory of multiplication operators and the recurrence properties for nondifferentiable functions in the Zygmund class Λ*a

Published online by Cambridge University Press:  26 February 2010

J. M. Anderson
Affiliation:
Department of Mathematics, University College London, London. WC1E 6BT
E. A. Housworth
Affiliation:
Department of Mathematics, University of Virginia, Charlottesville, Virginia, U.S.A.
L. D. Pitt
Affiliation:
Department of Mathematics, University of Virginia, Charlottesville, Virginia, U.S.A.
Get access

Extract

Abstract. Let Φ be in the disc algebra H ∩ C(T) with its restriction to T in the Zygmund space of smooth functions λ*(T). If P(Φ') ⊂ T is the set of Plessner points of Φ' and if F = Φ + Ψ, where Ψ∈C1(T), it is shown that F(P(Φ')) ⊆ C is a set of zero linear Hausdorff measure. Applications are given to the spectral theory of multiplication operators.

Type
Research Article
Copyright
Copyright © University College London 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Anderson, J. M., Clunie, J. and Pommerenke, C.. On Bloch functions and normal functions. J. reine angew. Math., 270 (1974), 1234.Google Scholar
2.Anderson, J. M., Horowitz, J. and Pitt, L. D.. On the existence of local times. J. Theoretical Prob., 4 (1991), 563603.CrossRefGoogle Scholar
3.Anderson, J. M. and Pitt, L. D.. Recurrence properties of certain lacunary series, l. J. reine angew. Math., 377 (1987), 8296.Google Scholar
4.Anderson, J. M. and Pitt, L. D.Probabilistic behaviour of functions in the Zygmund spaces Λ* and λ*. Proc. London Math. Soc. (3), 59 (1989), 558592.CrossRefGoogle Scholar
5.Anderson, J. M. and Pitt, L. D.. The boundary behavior of Bloch functions and univalent functions. Michigan Math. J., 35 (1988), 313320.CrossRefGoogle Scholar
6.Duren, P. L.. Theory of Hp Spaces (Academic Press, New York, 1970).Google Scholar
7.Falconer, K. J.. The Geometry of Fractal Sets (Cambridge University Press, 1985).CrossRefGoogle Scholar
8.Hoffman, K.. Banach Spaces of Analytic Functions (Prentice Hall, Englewood Cliffs, NJ, 1962).Google Scholar
9.Makarov, N. G.. Probability methods in conformal mappings I, LOMI Preprints, E-12-88 (Leningrad, LOMI, 1988).Google Scholar
10.Pitt, L. D.. An example of stability of singular spectrum under smooth perturbations. Integral Eqns. and Op. Th., 5 (1982), 114126.CrossRefGoogle Scholar
11.Shapiro, H. S.. Monotonic singular functions of high smoothness. Michigan Math. J., 15 (1968), 265275.CrossRefGoogle Scholar
12.Spitzer, F.. Some theorems concerning 2-dimensional Brownian motion. Trans. Amer. Math. Soc., 87 (1958), 187197.CrossRefGoogle Scholar
13.Taylor, S. J. and Tricot, C.. Packing measure and its evaluation for a Brownian path. Trans. Amer. Math. Soc., 288 (1985), 679699.CrossRefGoogle Scholar
14.Zygmund, A.. Smooth functions. Duke Math. J., 12 (1945), 4776.CrossRefGoogle Scholar
15.Zygmund, A.. Trigonometric Series, 2nd ed. (Cambridge University Press, 1968).Google Scholar