Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-10T21:52:27.461Z Has data issue: false hasContentIssue false

The volume of duals and sections of polytopes

Published online by Cambridge University Press:  26 February 2010

P. Filliman
Affiliation:
Department of Mathematics, Western Washington University, Bellingham, WA 98225, USA.
Get access

Abstract.

An explicit formula is given for the volume of the polar dual of a polytope. Using this formula, we prove a geometric criterion for critical (w.r.t. volume) sections of a regular simplex.

MSC classification

Type
Research Article
Copyright
Copyright © University College London 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Ball, K.. Volumes of sections of cubes and related problems. In Geometric Aspects of Functional Analysis, Lee. Notes in Math., 1376 (Springer-Verlag, 1989), 251260.CrossRefGoogle Scholar
2.Bokowski, J. and Sturmfels, B.. Computational Synthetic Geometry, Lee. Notes in Math., 1355 (Springer-Verlag, 1989).CrossRefGoogle Scholar
3.Coxeter, H. S. M.. Regular Polytopes (Dover, New York, 1973).Google Scholar
4.Day, M. M.. Polygons circumscribed about closed convex curves. Trans. Amer. Math. Soc., 62 (1947), 315319.CrossRefGoogle Scholar
5.Eggleston, H. G., Grünbaum, B. and Klee, V.. Some semicontinuity theorems for convex polytopes and cell-complexes. Comment. Math. Helv., 39 (1964), 165188.CrossRefGoogle Scholar
6.Tóth, L. Fejes. Regular Figures (MacMillan Co., New York, 1964).Google Scholar
7.Filliman, P.. Exterior algebra and projections of polytopes. Geometriae Dedicata. To appear.Google Scholar
8.Filliman, P.. The extreme projections of the regular simplex. Trans. Amer. Math. Soc. To appear.Google Scholar
9.Filliman, P.. Symmetric solutions to isoperimetric problems for polytopes. Preprint.Google Scholar
10.Gel'fand, I. M.. General theory of hypergeometric functions. Dokl. Akad. Nauk. SSSR, (1) 288 (1986), 1418.Google Scholar
11.Gel'fand, I. M. and Zelevinsky, A. V.. Algebraic and combinatorial aspects of the general theory of hypergeometric functions. Funkts. Anal. Pril., (3) 20 (1986), 183197.CrossRefGoogle Scholar
12.Gel'fand, I. M., Vasil'ev, V. A. and Zelevinsky, A. V.. General hypergeometric functions on complex Grassmannians. Funkts. Anal. Pril., (1) 21 (1987), 2338.Google Scholar
13.Griinbaum, B.. Convex Polytopes (John Wiley and Sons, London, 1967).Google Scholar
14.Klebaner, F., Sudbury, A. and Watterson, G.. The volumes of simplices, or, find the penguin. J. Austral. Math. Soc., 46 (1989), 263268.CrossRefGoogle Scholar
15.Klee, V.. Facet-centroids and volume minimization. Studia Sci. Math. Hungarica, 21 (1986), 143147.Google Scholar
16.Lawrence, J.. Polytope volume computation. Preprint.Google Scholar
17.Varchenko, A. N.. Combinatorics and topology of an arrangement of affine hyperplanes in a real space. Funkts. Anal. Pril., (1) 21 (1987), 1122.Google Scholar
18.Walkup, D. W.. A simplex with a large cross section. Amer. Math. Monthly, 75 (1968), 3436.CrossRefGoogle Scholar
19.Zelevinsky, A. V.. Geometry and combinatorics related to vector partition functions. Dokl. Akad. Nauk. SSSR. To appear.Google Scholar