Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-27T22:28:48.062Z Has data issue: false hasContentIssue false

Zeros of generalized Airy functions

Published online by Cambridge University Press:  26 February 2010

P. Baldwin
Affiliation:
Department of Engineering Mathematics, The University of Newcastle-upon-Tyne, Newcastle-upon-Tyne. NE1 7RU
Get access

Extract

Some interlacing properties of the zeros of the generalized Airy functions A1(z, p) are given for non-positive integral values of p. The result that A1 (z,p) has no real zero for is extended to show that all the zeros of A1(z,p) are real and simple if . It is also shown that all the zeros of the functions Bk(z,p, 1) for k = 1, 2, 3 are simple for non-positive integral p.

Type
Research Article
Copyright
Copyright © University College London 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Baldwin, P.. Mathematika, 28 (1981), 116140.CrossRefGoogle Scholar
2.Baldwin, P.. Proc. Roy. Soc. Lond., A, 399 (1985), 321365.Google Scholar
3.Chester, C., Friedman, B. and Ursell, F.. Proc. Camb. Phil. Soc, 53 (1957), 599611.CrossRefGoogle Scholar
4.Davey, A. and Reid, W. H.. J. Fluid Mech., 80 (1977), 509525.CrossRefGoogle Scholar
5.Drazin, P. G. and Reid, W. H.. Hydrodynamic Stability (Cambridge, 1981).Google Scholar
6.Hughes, T. H. and Reid, W. H.. Phil. Trans. Roy. Soc. Lond., A263 (1968), 5791.Google Scholar
7.Olver, F. W. J.. Phil. Trans. Roy. Soc. Lond., A247 (1954), 328368.Google Scholar
8.Olver, F. W. J.. Asymptotics and Special Functions (Academic Press, 1974).Google Scholar
9.Reid, W. H.. Studies in Appl. Math., 51 (1972), 341368.CrossRefGoogle Scholar
10.Wasow, W.. J. Res. Nat. Bur. Stand. 51 (1953), 195202.CrossRefGoogle Scholar