Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-02T17:19:22.710Z Has data issue: false hasContentIssue false

Marangoni convection: velocity measurements using PTV methodaround a single vapor bubble

Published online by Cambridge University Press:  30 May 2014

Get access

Abstract

An experimental investigation of the Marangoni convection around a single vapor bubble ofFC-72 on a downward-facing heated surface was reported. The boiling cell used for thisstudy was equipped with an optical measurement system which was dedicated to the ParticleTracking Velocimetry (PTV) method. This method allowed us to obtain the velocity fields inthe liquid around the vapor bubble. From the velocity fields obtained, we verified thepresence of Marangoni convection rolls in the vicinity of the liquid-vapor interface.Lastly, the influence of levels of subcooling on the velocity of convective rolls relatedto the Marangoni effect was investigated.

Type
Research Article
Copyright
© AFM, EDP Sciences 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Scriven, L.E., Sternling, C.V., The Marangoni Effects, Nature 187 (1960) 186188 CrossRefGoogle Scholar
Chun, C.H., Raake, D., Hansmann, G., Oscillating convection modes in the surroundings of an air bubble under a horizontal heated wall, Exp. Fluids 11 (1991) 359367 CrossRefGoogle Scholar
Wozniak, G., Optical whole-field methods for thermo-convective flow analysis in microgravity, Meas. Sci. Technol. 10 (1999) 878 CrossRefGoogle Scholar
Straub, J., Origin and Effect of Thermocapillary Convection in Subcooled Boiling, Ann. N. Y. Acad. Sci. 974 (2002) 348363 CrossRefGoogle ScholarPubMed
Kao, Y.S., Kenning, D.B.R., Thermo capillary flow near a hemispherical bubble on a heated wall, J. Fluid Mech. 53 (1972) 715735 CrossRefGoogle Scholar
Barthès, M., Reynard, C., Santini, R., Tadrist, L., Détermination des caractéristiques géométriques de la croissance d’une bulle de vapeur et des transferts de chaleur associés: influence des incondensables sur le déclenchement d’instabilités convectives, Mecanique et Industries 6 (2010) 257 CrossRefGoogle Scholar
Wozniak, K., Wozniak, G., Rösgen, T., Particle-image-velocimetry applied to thermocapillary convection, Exp. Fluids 10 (1990) 1216 CrossRefGoogle Scholar
Aldrich Chemical Company Inc., 1990 Aldrich Chemical Company Inc. Catalog Handbook of Fine Chemicals, Aldrich Chemical Company, Inc., Milwaukee WI, 1990, 1
V. Carvalho, M. Barthès, V. Lepiller, Y. Bailly, Caractérisation de la convection thermocapillaire autour d’une bulle de vapeur nucleé´e par la méthode PIV 2D, Congrès Français de Visualisation et de Traitement d’Images en Mécanique des Fluides, 201
Kassemi, M., Rashidnia, N., Steady and oscillatory thermocapillary convection generated by a bubble, Phys. Fluids 12 (2000) 31333146 CrossRefGoogle Scholar
Reynard, C., Barthès, M., Santini, R., Tadrist, L., Experimental study of the onset of the 3D oscillatory thermocapillary convection around a single air or vapor bubble: Influence on heat transfer, Exp. Therm. Fluid Sci. 29 (2005) 783793 CrossRefGoogle Scholar
Baranenko, V.I., Chichkan, L.A., Thermocapillary Convection in the Boiling of Various Fluids, Heat Transfer, Soviet Res. 12 (1980) 4044 Google Scholar
Prenel, J., Bailly, Y., Recent evolutions of imagery in fluid mechanics: From standard tomographic visualization to 3D volumic velocimetry, Optics and Lasers in Engineering, Opt. Meth. Heat Transfer Fluid Flow 44 (2006) 321334 Google Scholar