Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-14T05:24:15.682Z Has data issue: false hasContentIssue false

Strict error bounds for linear and nonlinear solid mechanicsproblems using a patch-based flux-free method

Published online by Cambridge University Press:  20 December 2010

Régis Cottereau*
Affiliation:
Laboratoire MSSMat, École Centrale Paris, CNRS, Grande voie des vignes, 92295 Châtenay-Malabry, France
Ludovic Chamoin
Affiliation:
LMT-Cachan, ENS Cachan, CNRS, Paris 6 University, 61 avenue du Président Wilson, 94230 Cachan, France
Pedro Díez
Affiliation:
Laboratori de Càlcul Numèric, Universitat Politècnica de Catalunya, Jordi Girona 1-3, 08034 Barcelona, Spain
*
a Corresponding author:pedro.diez@upc.edu
Get access

Abstract

We discuss, in this paper, a common flux-free method for the computation of strict errorbounds for linear and nonlinear finite-element computations. In the linear case, the errorbounds are on the energy norm of the error, while, in the nonlinear case, the concept oferror in constitutive relation is used. In both cases, the error bounds are strict in thesense that they refer to the exact solution of the continuous equations, rather than tosome FE computation over a refined mesh. For both linear and nonlinear solid mechanics,this method is based on the computation of a statically admissible stress field, which isperformed as a series of local problems on patches of elements. There is no requirement tosolve a previous problem of flux equilibration globally, as happens with othermethods.

Type
Research Article
Copyright
© AFM, EDP Sciences 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Références

M. Ainsworth, J.T. Oden, A posteriori error estimation in finite element analysis,Pure and Applied Mathematics, Wiley-Interscience, 2000
Wiberg, N.E., Díez, P., Adaptive modeling and simulation, Comput. Methods Appl. Mech. Eng. 195 (2006) 205480 CrossRefGoogle Scholar
P. Ladevèze, J.-P. Pelle, Mastering calculations in linear and nonlinear mechanics, Mechanical Engineering, Springer, 2005
Ladevèze, P., Upper error bound on calculated outputs of interest for linear and nonlinear structural problems, C. R. Mécanique 334 (2006) 399407 CrossRefGoogle Scholar
Chamoin, L., Ladevèze, P., Bounds on history-dependent or independent local quantities in viscoelasticity problems solved by approximate methods, Int. J. Numer. Meth. Eng. 71 (2007) 13871411 CrossRefGoogle Scholar
Ladevèze, P., Chamoin, L., Florentin, E., A new non-intrusive technique for the construction of admissible stress fields in model verification, Comput. Methods Appl. Mech. Eng. 199 (2010) 766777 CrossRefGoogle Scholar
Zienkiewicz, O.C., Zhu, J.Z., A simple error estimator and adaptive procedure for practical engineering analysis, Int. J. Numer. Meth. Eng. 24 (1987) 337357 CrossRefGoogle Scholar
Babuška, I., Rheinboldt, W.C., Error estimates for adaptive finite element computations, SIAM J. Numer. Anal. 15 (1978) 736755 CrossRefGoogle Scholar
Ladevèze, P., Leguillon, D., Error estimate procedure in the finite element method and applications, SIAM J. Numer. Anal. 20 (1983) 485509 CrossRefGoogle Scholar
Zhu, J.Z.,A posteriori error estimation – the relationship between different procedures, Comput. Methods Appl. Mech. Eng. 150 (1997) 411422 CrossRefGoogle Scholar
Choi, H.-W., Paraschivoiu, M., Adaptive computations of a posteriori finite element output bounds: a comparison of the “hybrid-flux” approach and the “flux-free” approach, Comput. Methods Appl. Mech. Eng. 193 (2004) 40014033 CrossRefGoogle Scholar
Parés, N., Díez, P., Huerta, A., Subdomain-based flux-free a posteriori error estimators, Comput. Methods Appl. Mech. Eng. 195 (2006) 297323 CrossRefGoogle Scholar
Carstensen, C., Funken, S.A., Fully reliable localized error control in the FEM, SIAM J. Sci. Comput. 21 (1999-2000) 14651484 CrossRefGoogle Scholar
Machiels, L., Maday, Y., Patera, A.T., A “flux-free” nodal Neumann subproblem approach to output bounds for partial differential equations, C.-R. Acad. Sci. Ser. I – Math. 330 (2000) 249254 Google Scholar
Morin, P., Nochetto, R.H., Siebert, K.G., Local problems on stars: a posteriori error estimators, convergence, and performance, Math. Comp. 72 (2003) 10671097 CrossRefGoogle Scholar
Prudhomme, S., Nobile, F., Chamoin, L., Oden, J.T., Analysis of a subdomain-based error estimator for finite element approximations of elliptic problems, Numer. Methods Partial Differ. Eqs. 20 (2004) 165192 CrossRefGoogle Scholar
J.P. Moitinho de Almeida, E.A.W. Maunder, Recovery of equilibrium on star patches using a partition of unity technique, Int. J. Numer. Meth. Eng. 2008, submitted
Sauer-Budge, A.M., Bonet, J., Huerta, A., Peraire, J., Computing bounds for linear functionals of exact weak solutions to Poisson’s equation, SIAM J. Numer. Anal. 42 (2004) 16101630 CrossRefGoogle Scholar
Parés, N., Bonet, J., Huerta, A., Peraire, J., The computation of bounds for linear-functional outputs of weak solutions to the two-dimensional elasticity equations, Comput. Methods Appl. Mech. Eng. 195 (2006) 406429 CrossRefGoogle Scholar
Parés, N., Díez, P., Huerta, A., Bounds of functional outputs for parabolic problems. Part I: Exact bounds of the discontinuous Galerkin time discretization, Comput. Methods Appl. Mech. Eng. 197 (2008) 16411660 CrossRefGoogle Scholar
Parés, N., Díez, P., Huerta, A., Bounds of functional outputs for parabolic problems. Part II: Bounds of the exact solution, Comput. Methods Appl. Mech. Eng. 197 (2008) 16611679 CrossRefGoogle Scholar
Cottereau, R., Díez, P., Huerta, A., Strict error bounds for linear solid mechanics problems using a subdomain-based flux-free method, Comp. Mech. 44 (2009) 533547 CrossRefGoogle Scholar
Becker, R., Rannacher, R., An optimal control approach to shape a posteriori error estimation in finite element methods, Acta Numerica 10 (2001) 1102 CrossRefGoogle Scholar
Prudhomme, S., Oden, J.T., On goal-oriented error estimation for elliptic problems: application to the control of pointwise errors, Comput. Methods Appl. Mech. Eng. 176 (1999) 313331 CrossRefGoogle Scholar
J.J. Moreau, Fonctionnelles convexes, Cours du Collège de France, 1966
Paraschivoiu, M., Peraire, J., Patera, A.T., A posteriori finite element bounds for linear-functional outputs of elliptic partial differential equations, Comput. Methods Appl. Mech. Eng. 150 (1997) 2350 CrossRefGoogle Scholar