Published online by Cambridge University Press: 21 April 2005
Cavitation erosion is a current wear type in hydraulic turbines, on pump impellers, on ship propellers, valves, heat-exchanger tubes and other hydraulic structures in contact with high-velocity liquids subjected to pressure changes. Much effort has been done to optimise the design and operating parameters in order to avoid cavitation wear for the equipment. But, this type of wear has also been observed in mechanical devices which such as plain bearings, seals, orifices in which fluid goes through severe restrictions. Cavitation damage may occur when surfaces in contact with fluid are subjected to vibrations, e.g.: water-cooled Diesel-engine cylinder liner. Sometimes, cavitation can initiate other types of wear such as adhesion or abrasion because of wear particles produced at the friction interface, making the failure analysis more difficult.Cavitation wear mechanisms were showed through three industrial examples. The first one is a hydrodynamic plain bearing which was heavily damaged by cavitation wear due to flow instability. The second one concerns a low speed translating plain bearing. Firstly, abrasion traces were observed on the contact surface. But a deeper study showed that solid particles produced by cavitation wear had been the main cause of the abrasion wear. The last example presents several cases of cavitation damage in oil lubricated plain bearing observed in medium/slow speed diesel engine for marine or power station applications. Because of fluctuation of radial force from crankshaft and instability of lubricant flow, variation of oil pressure can be sufficient to produce bubble inception, collapse and microjet formation process.