Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T22:12:41.005Z Has data issue: false hasContentIssue false

Dynamique en flexion de tubes parcourus à grandes vitesses

Published online by Cambridge University Press:  16 May 2009

Quentin Lambert
Affiliation:
Institut PRISME, UPRES 4229/Équipe Risques Explosions Structures, Université d'Orléans, 63 avenue de Lattre de Tassigny, 18020 Bourges Cedex, France C.T.A. International, 8 route de Guerry, 18023 Bourges Cedex, France
André Langlet
Affiliation:
Institut PRISME, UPRES 4229/Équipe Risques Explosions Structures, Université d'Orléans, 63 avenue de Lattre de Tassigny, 18020 Bourges Cedex, France
Jérôme Renard
Affiliation:
Institut PRISME, UPRES 4229/Équipe Risques Explosions Structures, Université d'Orléans, 63 avenue de Lattre de Tassigny, 18020 Bourges Cedex, France
Nicolas Eches
Affiliation:
NEXTER Munition, 7 route de Guerry, 18023 Bourges Cedex, France
Get access

Abstract

Ce travail porte sur la réponse temporelle d'une poutre à section et inertie variable, sollicitée par un chargement mobile. Dans un premier temps le chargement est apporté par une masse contrainte de se déplacer sur la poutre sans pouvoir s'en séparer. Dans un deuxième temps, le chargement est apporté par un oscillateur en mouvement sur la poutre. Cette modélisation sera confrontée à d'autres codes de calculs tels que LS-Dyna et SIMBAD. L'application concerne la dynamique des tubes d'armes couplée au projectile pendant son parcours balistique dans le tube. L'exploitation des modèles présentés a pour but d'obtenir une approximation des paramètres de sortie du projectile, lesquels, en constituant les conditions initiales du vol, influencent la dispersion à la cible.

Type
Research Article
Copyright
© AFM, EDP Sciences, 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Lee, U., Separation between the flexible structure and the moving mass sliding on it, J. Sound Vibr. 209 (1998) 867877 CrossRef
Pesterev, A.V., Yang, B., Bergman, L.A., Tan, C.A., Response of elastic continuum carrying multiple moving oscillators, ASCE J. Eng. Mech. 127 (2001) 260265 CrossRef
Steele, C.R., The Timoshenko beam with a moving load, J. Appl. Mech. 35 (1968) 481488 CrossRef
L. Fryba, Vibration of solids and structures under moving loads, Noordhoff Publishing, Groningen, 1972
Renard, J., Taazount, M., Transient responses of beams and plates subject to travelling load. Miscellaneous results, Eur. J. Mech. A/Solids 21 (2002) 301322 CrossRef
Rieker, J.R., Trethewey, M.W., Finite element analysis of an elastic beam structure subjected to a moving distributed mass train, Mech. Syst. Sig. Proc. 13 (1999) 3151 CrossRef
Cartmell, M.P., Wu, J.J., Whittaker, A.R., Dynamic responses of structures to moving bodies using combined finite element and analytical methods, Int. J. Mech. Sci. 43 (2001) 25552579
Olsson, M., Finite element modal co-ordinate analysis of structures subjected to moving loads, J. Sound Vib. 99 (1985) 112 CrossRef
Lee, H.P., The dynamic response of a Timoshenko beam subjected to a moving mass, J. Sound Vib. 198 (1996) 249256 CrossRef
Akin, J.E., Mofid, M., Numerical solution for response of beams with moving mass, J. Structural Eng. 115 (1989) 120131 CrossRef
Ting, E.C., Genin, J., Ginsberg, J.H., A general algorithm for moving mass problem, J. Sound Vib. 33 (1974) 4958 CrossRef
Pesterev, A.V., Bergman, L.A., Tan, C.A., Tsao, T.C., Yang, B., On asymptotics of the solution of the moving oscillator problem, J. Sound Vib. 260 (2003) 516536 CrossRef
To, C.W.S., A linearly tapered beam finite element incorporating shear deformation and rotary inertia for vibration analysis, J. Sound Vibr. 78 (1981) 475484 CrossRef
Hou, Y.C., Tseng, C.H., A new high-order non-uniform Timoshenko beam finite element on variable two-parameter foundations for vibration analysis, J. Sound Vib. 191 (1996) 91106 CrossRef
Seon, M.H., Haym, B., Timothy, W., Dynamics of transversely vibrating beams using four engineering theories, J. Sound Vib. 225 (1999) 935988
Cowper, G.R., The shear coefficient in Timoshenko's beam theory, J. Appl. Mech. 33 (1966) 335340 CrossRef
Rieker, J.R., Lin, Y.-H., Trethewey, M.W., Discretization considerations in moving load finite element beam models, Finite elements in Analysis and Design 21 (1996) 129144 CrossRef
Martinez-Castro, A.E., Museros, P., Castillo-Linares, A., Semi-analytic solution in the time domain for non-uniform multi-span Bernoulli-Euler beams traversed by moving loads, J. Sound Vib. 294 (2006) 278297 CrossRef