Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T07:42:28.841Z Has data issue: false hasContentIssue false

Improvement of thermomechanical full-field analysis of metallic polycrystals using crystallographic data

Published online by Cambridge University Press:  05 April 2013

Rian Seghir
Affiliation:
Univ. Lille Nord de France, 59000 Lille, France CNRS, UMR 8107, 59650Villeneuve d’Ascq, France ECLille, LML, 59650 Villeneuve d’Ascq, France
Jean-François Witz
Affiliation:
Univ. Lille Nord de France, 59000 Lille, France CNRS, UMR 8107, 59650Villeneuve d’Ascq, France
Eric Charkaluk*
Affiliation:
Univ. Lille Nord de France, 59000 Lille, France CNRS, UMR 8107, 59650Villeneuve d’Ascq, France ECLille, LML, 59650 Villeneuve d’Ascq, France
Philippe Dufrénoy
Affiliation:
Univ. Lille Nord de France, 59000 Lille, France CNRS, UMR 8107, 59650Villeneuve d’Ascq, France Univ. Lille1, Polytech’Lille, LML, 59650 Villeneuve d’Ascq, France
*
aCorresponding author: eric.charkaluk@univ-lille1.fr
Get access

Abstract

This paper is based on additional treatments of the experimental results obtained by L. Bodelot, L. Sabatier, E. Charkaluk, P. Dufrénoy [Experimental setup for fully coupled kinematic and thermal measurements at the microstructure scale of an AISI 316l steel, Mater. Sci. Eng. A 501 (2009) 52–60]. In order to perform inter- and intragranular thermomechanical analyses in a metallic polycrystal at the grain scale, a crystallography-based projection technique of the thermal and displacement fields on a polynomial basis is proposed. It enables intragranular coupled analysis of strain and temperature full-field data consistent with the plastic slip activation observed on specimen surface after the test.

Type
Research Article
Copyright
© AFM, EDP Sciences 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Sachs, G., Ver, Z., Zur ableilung einer fleissbedingung, Z. Ver. Dtsch. Ing. 72 (1928) 734736 Google Scholar
E. Schmid, Yield point of a crystals: critical shear stress law, in Proc. 1st Int. Congr. Appl. Mech., Delft, Neetherland, 1924, p. 342
Taylor, G.I., The latent energy remaining in a metal after cold working, Proc. Roy. Soc. London Series A, Containing Papers of a Mathematical and Physical Character 62 (1938) 307326 Google Scholar
A. Cottrell, Dislocations and plastic flow in crystals, Oxford at the Clarendon Press, 1953
C. Barrett, Structure of Metals, McGraw-Hill Book Company, Inc., New York, 1948
Boas, W., Hargreaves, M., On the inhomogeneity of plastic deformation in the crystals of an aggregate, Proc. Roy. Soc. A 193 (1948) 8997 CrossRefGoogle Scholar
Farren, W.S., Taylor, G.I., The heat developed during plastic extension of metals. Proc. Roy. Soc. London Series A, Containing Papers of a Mathematical and Physical Character 107 (1925) 422451 Google Scholar
Taylor, G.I., Quinney, H., Proc. Roy. Soc. London Series A, Containing Papers of a Mathematical and Physical Character 143 (1934) 307 Google Scholar
Quinney, H., Taylor, G.I., The emission of the latent energy due to previous cold working when a metal is heated. Proc. Roy. Soc. London Series A, Mathematical and Physical Sciences 163 (1937) 157181 CrossRefGoogle Scholar
Bever, M.B., Holt, D.L., Titchener, A.L., The stored energy of cold work, Progr. Mater. Sci. 17 (1973) 5177 CrossRefGoogle Scholar
Chrysochoos, A., Chezeaux, J.C., Caumon, H., Analyse thermomécanique des lois de comportement par thermographie infrarouge, Revue de physique appliquée (Paris) 24 (1989) 215225 CrossRefGoogle Scholar
Hodowany, J., Ravichandran, G., Rosakis, A., Rosakis, P., Partition of plastic work into heat and stored energy in metals, Experim. Mech. 40 (2000) 113123 CrossRefGoogle Scholar
Macdougall, D., Determination of the plastic work converted to heat using radiometry, Experim. Mech. 40 (2000) 298306 CrossRefGoogle Scholar
Oliferuk, W., Swiatnicki, W.A., Grabski, M.W., Rate of energy storage and microstructure evolution during the tensile deformation of austenitic steel, Mater. Sci. Eng. A 161 (1993) 5563 CrossRefGoogle Scholar
Clarebrough, L.M., Hargreaves, M.E., West, G.W., The release of energy during annealing of deformed metals, Proc. Roy. Soc. A 232 (1955) 252270 CrossRefGoogle Scholar
Oliferuk, W., Swiatnicki, W.A., Grabski, M.W., Effect of the grain size on the rate of energy storage during the tensile deformation of an austenitic steel, Mater. Sci. Eng. A 197 (1995) 4958 CrossRefGoogle Scholar
Badulescu, C., Grédiac, M., Haddadi, H., Mathias, J.D., Balandraud, X., Tran, H.S., Applying the grid method and infrared thermography to investigate plastic deformation in aluminium multicrystal, Mech. Mater. 43 (2011) 36 CrossRefGoogle Scholar
Saai, A., Louche, H., Tabourot, L., Chang, H., Experimental and numerical study of the thermo-mechanical behavior of al bi-crystal in tension using full field measurements and micromechanical modeling, Mech. Mater. 42 (2010) 275292 CrossRefGoogle Scholar
Bodelot, L., Charkaluk, E., Sabatier, L., Dufrénoy, P., Experimental study of heterogeneities in strain and temperature fields at the microstructural level of polycrystalline metals through fully-coupled full-field measurements by digital image correlation and infrared thermography, Mech. Mater. 43 (2011) 654670 CrossRefGoogle Scholar
Bodelot, L., Sabatier, L., Charkaluk, E., Dufrénoy, P., Experimental setup for fully coupled kinematic and thermal measurements at the microstructure scale of an AISI 316l steel, Mater. Sci. Eng. A 501 (2009) 5260 CrossRefGoogle Scholar
Allais, L., Bornert, M., Bretheau, T., Caldemaison, D., Experimental characterization of the local strain field in a heterogeneous elastoplastic material, Acta Metall. Mater. 42 (1994) 38653880 CrossRefGoogle Scholar
Lagattu, F., Bridier, F., Villechaise, P., Brillaud, J., In-plane strain measurements on a microscopic scale by coupling digital image correlation and an in situ SEM technique, Mat. Charac. 56 (2006) 1018 CrossRefGoogle Scholar
Héripré, E., Dexet, M., Crépin, J., Gélébart, L., Roos, A., Bornert, M., Caldemaison, D., Coupling between experimental measurements and polycrystal finite element calculations for micromechanical study of metallic materials, Int. J. Plas. 23 (2007) 15121539 CrossRefGoogle Scholar
Bartali, A.E., Aubin, V., Degallaix, S., Fatigue damage analysis in a duplex stainless steel by digital image correlation technique. Fat. Frac. Engng. Mat. Struct. 31 (2007) 137151 CrossRefGoogle Scholar
Hild, F., Raka, B., Baudequin, M., Roux, S., Cantelaube, F., Multiscale displacement field measurements of compressed mineral-wool samples by digital image correlation, Appl. Opt. 41 (2002) 68156828 CrossRefGoogle ScholarPubMed
Pron, H., Bissieux, C., Focal plane array infrared cameras as research tools, QIRT J. 1 (2004) 229240 CrossRefGoogle Scholar
Louche, H., Chrysochoos, A., Thermal and dissipative effects accompanying lüders band propagation, Mater. Sci. Eng.: A 307 (2001) 1522 CrossRefGoogle Scholar
Berthel, B., Wattrisse, B., Chrysochoos, A., Galtier, A., Thermographic analysis of fatigue dissipation properties of steel sheets, Strain 43 (2007) 273279 CrossRefGoogle Scholar
L. Priester, Joints de grains et plasticité cristalline, Hermes Science Publications, 2011
Nan, C., Birringer, R., Determining the Kapitza resistance and the thermal conductivity of polycrystals: a simple model, Phys. Rev. B 57 (1998) 82648268 CrossRefGoogle Scholar
A. Kelly, K. Knowles, Crystallography and crystal defects, John Wiley and Sons, 2012