Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-05T02:26:29.839Z Has data issue: false hasContentIssue false

Modelling dynamic fracture of thin shells filled with fluid: a fully SPH model

Published online by Cambridge University Press:  09 July 2008

Alain Combescure
Affiliation:
LaMCoS UMR CNRS 5259 INSA Lyon, 18–20 allée des sciences, 69621 Villeurbanne, France
Bertrand Maurel
Affiliation:
LaMCoS UMR CNRS 5259 INSA Lyon, 18–20 allée des sciences, 69621 Villeurbanne, France Électricité de France, Direction des études et recherches, 1 avenue du Général de Gaulle, 92141 Clamart Cedex, France
Serguei Potapov
Affiliation:
Électricité de France, Direction des études et recherches, 1 avenue du Général de Gaulle, 92141 Clamart Cedex, France
Get access

Abstract

This paper is devoted to the description of a new full MLS SPH modelisation of rupture of thin shell filled with fluid and the prediction on consecutive fluid loss though the fracture. The paper first presents an efficient and controlled model for elastoplastic rupture of thin shells by a single layer of SPH balls. The proposed model controls as well static and dynamic instabilities using two basic ingredients: additional stress points to control the hourglass like instabilities and extend the Monhagan viscosity control method to shear and bending components of the generalized efforts. The fluid is modeled using standard SPH fluid model. The interaction is modeled using pin-balls method which is very natural in this type of formulation. Application examples are presented.

Type
Research Article
Copyright
© AFM, EDP Sciences, 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Menouillard, T., Rethoré, R.J., Combescure, A., Bung, H., Efficient explicit time stepping for the extended finite element method (X-FEM), Int. J. Num. Meth. Eng. 68 (2006) 911939 CrossRef
A. Kolke, A. Legay, Enriched space time integration for fluid structure interaction: Part II, Thin flexible structures, Proc. 3rd European conference on computational mechanics, 5–6 June 2006, Lisbon
Gingold, R.A., Monaghan, J.J., Smoothed particle hydrodynamics: theory and application to non-spherical stars, MNRAS 181 (1977) 375382 CrossRef
Gray, J.P., Monaghan, J., SPH elastic dynamics, Computer Meth. Appl. Mech. Eng. 190 (2001) 66416662 CrossRef
Belytschko, T., Guo, Y., Liu, W.K., Xiao, S.P., A unified stability analysis of meshless particle methods, Int. J Num. Meth. Eng. 40 (2000) 13591400 3.0.CO;2-U>CrossRef
Belytschko, T., Rabczuk, T., Xiao, S.P., Stable particle methods based on Lagrangian kernels, Comp. Meth. Appl. Mech. Eng. 193 (2005) 10351063
T. Rabczuk, P.M.A. Areias, T. Belytschko, A meshfree method for non-linear dynamic fracture, Int. J. Num. Meth. Eng., in press
Rabczuk, T., Belytchko, T., Cracking particles: a simplified meshfree method for arbitrary evolving cracks, Int. J. Num. Meth. Eng. 61 (2004) 23162343 CrossRef
Johnson, , Beissel, , SPH for high velocity impact computations, Comp. Meth. Appl. Mech. Eng. 139 (1996) 347373 CrossRef
B. Maurel, Modélisation numérique de la rupture de réservoirs remplis de fluide par la méthode SPH couplée fluide coque, Thèse INSA, Lyon, 24 janvier 2008
Betsch, P., Menzel, A., Stein, E., On the parametrization of finite rotations in computational mechanics, Comp. Meth. Appl. Mech. Eng. 155 (1998) 273305 CrossRef
A.A. Ilyushin, Plasticité, Eyrolles, 1956
Zeng, Q., Combescure, A., Arnaudeau, F., An efficient plasticity algorithm for shell elements application to metal forming simulations, Comp. Struct. 79 (2001) 15251540 CrossRef
Belytschko, T., Neal, M.O., Contact-Impact by the Pinball method with penalty and Lagrangian Methods, Int. J. Num. Meth. Eng. 31 (1991) 547572 CrossRef
F. Casadei, A General Impact-Contact Algorithm based on hierarchic pin balls for the EUROPLEXUS software system, technical note No. 265, CCR ISPRA, Sept. 2003
Mc Neal, R.M., Harder, R.L., A proposed standard set of problems to test finite element accuracy, Finite Element Analysis Design 1 (1985) 320 CrossRef
Belytschko, T., Krysl, P., Analysis of thin shells by the EFG Method, Int. J. Solids Struct. 33 (2002) 30573080
S. Potapov, B. Maurel, A. Combescure, Using SPH method to model fluid structure interaction in fast transient dynamics, Proc. ECCOMAS Thematic conference on computational methods in structural dynamics and seismic engineering, 13–16 June 2007, ed. M. Papadrakakis, D.C. Charmpis, N.D. Lagaros, Y. Tsompanakis, Rethymno, Crete, Greece