Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T12:11:45.988Z Has data issue: false hasContentIssue false

Influence of surface conditions on fatigue strength through thenumerical simulation of microstructure*

Published online by Cambridge University Press:  06 July 2011

A. Le Pecheur
Affiliation:
Laboratoire MSSMat, UMR 8579 CNRS, École Centrale Paris, France. e-mail: philippe.bompard@ecp.fr Département MMC, EDF R&D, Site des Renardières, France
M. Clavel
Affiliation:
Laboratoire MSSMat, UMR 8579 CNRS, École Centrale Paris, France. e-mail: philippe.bompard@ecp.fr
F. Curtit
Affiliation:
Département MMC, EDF R&D, Site des Renardières, France
C. Rey
Affiliation:
Laboratoire MSSMat, UMR 8579 CNRS, École Centrale Paris, France. e-mail: philippe.bompard@ecp.fr
J.-M. Stephan
Affiliation:
Département MMC, EDF R&D, Site des Renardières, France
P. Bompard
Affiliation:
Laboratoire MSSMat, UMR 8579 CNRS, École Centrale Paris, France. e-mail: philippe.bompard@ecp.fr
Get access

Abstract

A thermal fatigue test (INTHERPOL) was developed by EDF in order to study the initiationof cracks. These tests are carried out on tubular specimens under various thermal loadingsand surface finish qualities in order to give an account of these parameters on crackinitiation. The main topic of this study is to test the sensitivity of different fatiguecriteria to surface conditions using a micro/macro modelling approach. Therefore a 304Lpolycrystalline aggregate, used for cyclic plasticity based FE modelling, have beenconsidered as a Representative Volume Element located at the surface and subsurface of thetest tube. This aggregate has been cyclically strained according to the results issuedfrom FE simulation of INTHERPOL thermal fatigue experiment. Different surface parametershave been numerically simulated: effects of local microstructure and of grainsorientation, effects of machining: metallurgical prehardening, residual stress gradient,and surface roughness. Three different fatigue criteria (Manson Coffin, Fatemi Socie anddissipated energy types), previously fitted at a macroscale for thermal fatigue of 304L,have been computed at a meso scale, in order to show the surface “hot spots” features andtest the sensitivity of these three criteria to different surface conditions. Results showthat grain orientation and neighbouring play an important role on the location of hotspots, and also that the positive effect of prestraining and the negative effect ofroughness on fatigue life are not all similarly predicted by these different fatiguecriteria.

Type
Research Article
Copyright
© EDP Sciences

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

F. Curtit, J.M. Stephan, INTHERPOL Thermal Fatigue Test, Pressure Vessels and Piping 2005, Denver, July 17-21
A. Le Pécheur, P. Bompard, M. Clavel, F. Curtit, C. Rey, J.M. Stephan, Thermal fatigue of austenitic stainless steel: influence of surface conditions, Fatigue Design 2007, Nov 21-22, 2007, Senlis France
A. Le Pêcheur, Fatigue Thermique d’un acier inoxydable austénitique, influence de l’état de surface, approche multiéchelle, PhD thesis, École Centrale Paris, 2008
B. Changeux, Loi de comportement pour l’usinage - localisation de la déformation et aspects microstructuraux, PhD thesis, ENSAM-Angers, 2001
S. Petitjean, Influence de l’état de surface sur le comportement en fatigue à grand nombre de cycle de l’acier inoxydable austénitique 304L, PhD thesis, Poitiers university, France, 2003
Erieau, P., Rey, C., International Journal of Plasticity 20 (2004) 1763-1788
M’Saoubi, R., Outeiro, J.C., Changeux, B., Lebrun, J.L., Dias, A.M., Residual stress analysis in orthogonal machining of standard and resulfurized AISI 316L steels, Journal of Materials Processing Technology 96 (1999) 225-233 Google Scholar
J.L. Lebrun, Rapport de mesures de contraintes résiduelles, ENSAM-Angers, 2003
Nouailhas, D., Modélisation de l’écrouissage et de la restauration en viscoplasticité cyclique, Revue de Physique Appliquée 23 (1988) 339-349 Google Scholar
C. Despre, C. Robertson, M.C. Fivel, Crack initiation in fatigue: experiments and three-dimensional dislocation simulations, Mater. Sci. Eng. A 2004; A 387_389:288–91.
P. Franciosi, Étude théorique et expérimentale du comportement élastoplastique des monocristaux métalliques se déformant par glissement, PhD thesis, Paris-Nord university, France, 1984
Devincre, B., Kubin, L., Hoc, T., Scripta Materiala 54 (2006) 741-746
A.H. Cottrell, Dislocations and Plastic Flow in Crystals, Oxford University Press, London, 1953, 111-132
Fatemi, A., Socie, D.F, Fat. Fract. Eng. Mater. Struct. 11 (1988) 149-65
Amiable, S., Chapuliot, S., Int. J. Fatigue 28 (2006) 692-706