Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-11T03:41:33.007Z Has data issue: false hasContentIssue false

Influence of the alloying elements on crevice corrosion of stainless steels: a modeling approach

Published online by Cambridge University Press:  01 December 2011

B. Malki
Affiliation:
Laboratoire Science et Ingénierie des Matériaux et Procédés (SIMAP), Université de Grenoble, BP 75, 38402 St Martin d’Hères Cedex, France. e-mail: brahim.malki@simap.grenoble-inp.fr
L. Peguet
Affiliation:
ARCELORMITTAL R&D, BP15, 62330 Isbergues, France
B. Baroux
Affiliation:
Laboratoire Science et Ingénierie des Matériaux et Procédés (SIMAP), Université de Grenoble, BP 75, 38402 St Martin d’Hères Cedex, France. e-mail: brahim.malki@simap.grenoble-inp.fr
Get access

Abstract

Crevice corrosion chemistry is modeled in galvanostatic mode using finite element method calculations. The results lead to the formulation of critical conditions for crevice propagation in terms of applied current and depassivation pHd. For a given stainless steel grade, the model predicts a linear relation IC(pHd) between a “critical propagation current” IC and the depassivation pHd. Detailed computing is performed to compare the behavior of duplex 2304, ferritic AISI 430 and austenitic AISI 304 stainless steels. The model is shown to capture correctly the major asymptotic behaviors and to fairly predict the better corrosion resistance of the duplex grade, which is attributed to its slower dissolution kinetics in acidic environment. When comparing duplex stainless steels to ferritic or austenitic ones, it is now evident that the dissolution law and the depassivation pHd are the key factors that control the resistance to crevice corrosion propagation.

Type
Research Article
Copyright
© EDP Sciences, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Oldfield, J.W., Sutton, W.H., Brit. Corr. J. 13 (1978) 13-22
Oldfield, J.W., Sutton, W.H., Brit. Corr. J. 13 (1978) 104-111
Pickering, H.W., Corrosion 42 (1986) 125-140
H.W. Pickering, J. Electrochem. Soc. 150 (2000)
COMSOL AB, COMSOL Multiphysics, Ver. 4.0a, Stockholm, 2010