Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T07:51:16.919Z Has data issue: false hasContentIssue false

Response surface methodology to predict the mechanicalproperties of hot-rolled sheets

Published online by Cambridge University Press:  13 December 2013

A. Noroozi
Affiliation:
Department of Mechanical Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran. e-mail: Mohsen.ayaz@yahoo.com
M. Ayaz
Affiliation:
Department of Mechanical Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran. e-mail: Mohsen.ayaz@yahoo.com
N.B. Mostafa Arab
Affiliation:
Department of Mechanical Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran. e-mail: Mohsen.ayaz@yahoo.com
D. Mirahmadi Khaki
Affiliation:
Department of Materials Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran
Get access

Abstract

The goal of this study is to empirically investigate the major hot rolling processparameters affecting the yield strength, ultimate tensile strength and strain-hardeningexponent of Nb-microalloyed steel sheets. The parameters considered were the roughing,finishing and coiling temperatures. Three levels for each parameter were used to develop amodel relating the process parameters to mechanical properties. By applying the responsesurface methodology, analysis of variance was done to determine the mathematical modelsrelated to each response. The results indicated that decreasing the coiling and finishingtemperatures significantly influenced the mechanical properties. Also, the modelspredicted that the maximum yield strength, ultimate tensile strength and strain-hardeningexponent are simultaneously obtained under the following conditions: roughing temperature= 1097 °C, finishing temperature = 837 °C and coiling temperature = 580 °C. The predictedvalues were close to the experimental values, indicating the suitability of themodels.

Type
Research Article
Copyright
© EDP Sciences 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Zrnik, J., Kvackaj, T., Sripinproach, D., Sricharoenchai, P., Mater. Proc. Technol. 133 (2003) 236-242
T. Altan, Metal Forming; Fundamentals and Applications, Metals Park, Ohio 1985
Ebrahimi, R., Pardis, N., Mater. Sci. Eng. A 518 (2009) 56-60
W.F. Hosford, R.M. Caddell, Metal Forming: Mechanics and Metallurgy, Prentice-Hall, USA, 1983
Morrison, W.B., J. Trans. Amer. Soc. Metals 59 (1966) 824-846
Antoine, P., Vandeputte, S., Vogt, J.B., Mater. Sci. Eng. A 433 (2006) 55-63
Uemoto, M., Liu, Z.G., Sugimoto, S., Tsuchiya, K., Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science A 31A (2000) 1785-1794
Qiu, H., Wang, L.N., Hanamura, T., Torizuka, S., Mater. Sci. Eng. A 536 (2012) 269-272
A.J. Deardo, Modern Thermomechanical Processing of Microalloyed Steel: A Physical Metallurgy Prespective, In: M. Korchynsky, A.J. DeArdo, P. Repas, G. Tither (Eds.), Iron and Steel Society, Pittsburg, USA, 1995, pp. 15-34
Zhao, Ming Chun, Yang, Ke, Shan, Yiyng, Mater. Sci. Eng. A 335 (2002) 14-20.
H. Tamura, H. Sekine, T. Tanaka, C. Ouchi, Thermomechanical Processing of High-Strength Low-Alloy Steels, Butterworth & Co. Ltd., London, 1988
Kumar, D.R., Mater. Proc. Technol. 130-131 (2002) 31-41
Xiao, F.R., Liao, B., Shan, Y.Y., Qiao, G.Y., Zhong, Y., Zhang, C., Yang, K., Mater. Sci. Eng. A 431 (2006) 41-52
Schambron, T., Phillips, A.W., Obrine, D.M., Burg, J., Pereloma, E.V., Killmore, C.C., Williams, J.A., Iron and Steel Institute of Japan 49 (2009) 284-292
Xu, Y.B., Yu, Y.M., Xiao, B.L., Liu, Z.Y., Wang, G.D., Mater. Sci. 44 (2009) 3928-3935
Koo, J.Y., Luton, M.J., Bangaru, N.V., Int. J. Offshore Polar Eng. 14 (2004) 2-10
Garcia, C.I., Cho, K., Hua, M., Deardo, A.J., Mater. Sci. Forum 638-642 (2010) 124-129
H. Yada, Y. Matsumara, In: I. Tamura (Eds.), Proceedings of International Conference on physical metallurgy of thermo-mechanical processing of steel and other materials, THERMEC’88, Iron and Steel Institute of Japan, Tokyo, Japan, 1988, pp. 200-206
Chio, J.K., Seo, D.H., Lee, J.S., Um, K.K., Choo, W.Y., Iron and Steel Institute of Japan 43 (2003) 746-754
S. Yamamoto, C. Ouchi, T. Osuka, In: A.J. DeArdo, G.A. Ratz, P.J. Wray (Eds.), Thermomechanical Processing of Microalloyed Austenite, TMS-AIME, Japan, 1982, pp. 613-639
Das, P., Mukherjee, S., Ganguly, S., Bhattacharyay, B.K., Datta, S., Comput. Mater. Sci. 45 (2009) 104-110.
Han, Y., Shi, J., Xu, L., Cao, W.Q., Dong, H., Mater. Sci. Eng. A 553 (2012) 192-199.
Wei-minl, Guo, Zuo-cheng, Wang, Sheng, Liu, Xie-bin, Wang, Iron and Steel Research International 18 (2011) 42-46
Monajati, H., Asefi, D., Parsapour, A., Abbasi, Sh., Comput. Mater. Sci. 49 (2010) 876-881
Perlade, A., Grandemange, D., Huin, D., Couturier, A., Oostsuka, K., Revue de Métallurgie 105 (2008) 443-451
Berdjane, D., Fares, M.L., Baccouche, M., Lemmoui, A.N., Revue de Métallurgie 109 (2012) 465-475
D.C. Montgomery, Design and analysis of experiments, John Wiley and Sons, New York, 2004
G. Box, J. Hunter, W. Hunter, Statistics for experimenters, design, innovation and discovery, Wiley, New York, 2005
Brasil, Jorge L., Eva, Ricardo R., Milcharek, Caroline D., Martins, Lucas C., Pavan, Flavio A., Santos, Garsia A. Dos, Silvio, J.R., Dias, L.P., Jairton, Dupant, Norena, Casiano P. Zapata, Limaa, Eder C., Hazardous Materials 133 (2006) 143-153
Yang, Y.K., Chuang, M.T., Lin, S.S., Mater. Proc. Technol. 209 (2009) 4395-4400
Mirahmadi Khaki, D., Alizaadeh Otaaghvar, V., Iron and Steel Research International 18 (2011) 585-589
A.C. Atkinson, A.N. Donev, Optimum Experimental Design, Oxford Science, Oxford, 1992
Minitab Inc., MINITAB® Release 16 Statistical Software for Windows, State College, PA, 2011
Gomez, Manuel, Valles, Pilar, Medina, Sebastian F., Mater. Sci. Eng. A 528 (2011) 4761-4773
Bakkaloglu, Adem, Mater. Lett. 56 (2002) 263-272
R.H. Myers, D.C. Montgomery, C.M.A. Cook, Response Surface Methodology: Process and Product Optimization Using Designed Experiments, Wiley, USA, 2009
Qing-yun, Sha, Gui-yan, Li, Li-feng, Qiao, Ping-yuan, Yan, Iron and Steel Research International 14 (2007) 316-319.